This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgmhmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MgmHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → ( 𝑇 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) | |
| 2 | 1 | simprd | ⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → 𝑈 ∈ Mgm ) |
| 3 | mgmhmrcl | ⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) | |
| 4 | 3 | simpld | ⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝑆 ∈ Mgm ) |
| 5 | 2 4 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 8 | 6 7 | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 9 6 | mgmhmf | ⊢ ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ∧ 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 15 | 9 13 14 | mgmhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 16 | 15 | 3expb | ⊢ ( ( 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 17 | 16 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 19 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ) | |
| 20 | 10 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 21 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 22 | 20 21 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 23 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 24 | 20 23 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
| 25 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 26 | 6 14 25 | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 27 | 19 22 24 26 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 28 | 18 27 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 29 | 4 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → 𝑆 ∈ Mgm ) |
| 30 | 9 13 | mgmcl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 31 | 30 | 3expb | ⊢ ( ( 𝑆 ∈ Mgm ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 32 | 29 31 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 33 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) | |
| 34 | 20 32 33 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 35 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 36 | 20 21 35 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 37 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 38 | 20 23 37 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 39 | 36 38 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 40 | 28 34 39 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 41 | 40 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 42 | 12 41 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 43 | 9 7 13 25 | ismgmhm | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MgmHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ∧ ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) |
| 44 | 5 42 43 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑇 MgmHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MgmHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MgmHom 𝑈 ) ) |