This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| mgmhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| Assertion | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | mgmhmf.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 6 | simprl | ⊢ ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |