This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of resmgmhm2b . (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| Assertion | resmgmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) → ( 𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm ) ) | |
| 3 | 2 | simpld | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) → 𝑆 ∈ Mgm ) |
| 4 | submgmrcl | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → 𝑇 ∈ Mgm ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 8 | 6 7 | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 9 | 1 | submgmbas | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 11 | 10 | submgmss | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → 𝑋 ⊆ ( Base ‘ 𝑇 ) ) |
| 12 | 9 11 | eqsstrrd | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 13 | fss | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | |
| 14 | 8 12 13 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 15 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 17 | 6 15 16 | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 21 | 1 20 | ressplusg | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑇 ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 23 | 22 | oveqd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 | 19 23 | eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 24 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 14 25 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 27 | 6 10 15 20 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 28 | 5 26 27 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑈 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) |