This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm2.u | |- U = ( T |`s X ) |
|
| Assertion | resmgmhm2b | |- ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) -> ( F e. ( S MgmHom T ) <-> F e. ( S MgmHom U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm2.u | |- U = ( T |`s X ) |
|
| 2 | mgmhmrcl | |- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |
|
| 3 | 2 | simpld | |- ( F e. ( S MgmHom T ) -> S e. Mgm ) |
| 4 | 3 | adantl | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> S e. Mgm ) |
| 5 | 1 | submgmmgm | |- ( X e. ( SubMgm ` T ) -> U e. Mgm ) |
| 6 | 5 | ad2antrr | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> U e. Mgm ) |
| 7 | 4 6 | jca | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( S e. Mgm /\ U e. Mgm ) ) |
| 8 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 9 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 10 | 8 9 | mgmhmf | |- ( F e. ( S MgmHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 11 | 10 | adantl | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 12 | 11 | ffnd | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F Fn ( Base ` S ) ) |
| 13 | simplr | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ran F C_ X ) |
|
| 14 | df-f | |- ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) |
|
| 15 | 12 13 14 | sylanbrc | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> X ) |
| 16 | 1 | submgmbas | |- ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> X = ( Base ` U ) ) |
| 18 | 17 | feq3d | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) |
| 19 | 15 18 | mpbid | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
| 20 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 21 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 22 | 8 20 21 | mgmhmlin | |- ( ( F e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 23 | 22 | 3expb | |- ( ( F e. ( S MgmHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 24 | 23 | adantll | |- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 25 | 1 21 | ressplusg | |- ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
| 26 | 25 | ad3antrrr | |- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
| 27 | 26 | oveqd | |- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 28 | 24 27 | eqtrd | |- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 29 | 28 | ralrimivva | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 30 | 19 29 | jca | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) |
| 31 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 32 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 33 | 8 31 20 32 | ismgmhm | |- ( F e. ( S MgmHom U ) <-> ( ( S e. Mgm /\ U e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) ) |
| 34 | 7 30 33 | sylanbrc | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F e. ( S MgmHom U ) ) |
| 35 | 1 | resmgmhm2 | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) |
| 36 | 35 | ancoms | |- ( ( X e. ( SubMgm ` T ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) |
| 37 | 36 | adantlr | |- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) |
| 38 | 34 37 | impbida | |- ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) -> ( F e. ( S MgmHom T ) <-> F e. ( S MgmHom U ) ) ) |