This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of resmgmhm2b . (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm2.u | |- U = ( T |`s X ) |
|
| Assertion | resmgmhm2 | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm2.u | |- U = ( T |`s X ) |
|
| 2 | mgmhmrcl | |- ( F e. ( S MgmHom U ) -> ( S e. Mgm /\ U e. Mgm ) ) |
|
| 3 | 2 | simpld | |- ( F e. ( S MgmHom U ) -> S e. Mgm ) |
| 4 | submgmrcl | |- ( X e. ( SubMgm ` T ) -> T e. Mgm ) |
|
| 5 | 3 4 | anim12i | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( S e. Mgm /\ T e. Mgm ) ) |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 8 | 6 7 | mgmhmf | |- ( F e. ( S MgmHom U ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
| 9 | 1 | submgmbas | |- ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) ) |
| 10 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 11 | 10 | submgmss | |- ( X e. ( SubMgm ` T ) -> X C_ ( Base ` T ) ) |
| 12 | 9 11 | eqsstrrd | |- ( X e. ( SubMgm ` T ) -> ( Base ` U ) C_ ( Base ` T ) ) |
| 13 | fss | |- ( ( F : ( Base ` S ) --> ( Base ` U ) /\ ( Base ` U ) C_ ( Base ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
|
| 14 | 8 12 13 | syl2an | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 15 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 16 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 17 | 6 15 16 | mgmhmlin | |- ( ( F e. ( S MgmHom U ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 18 | 17 | 3expb | |- ( ( F e. ( S MgmHom U ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 19 | 18 | adantlr | |- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 20 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 21 | 1 20 | ressplusg | |- ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
| 23 | 22 | oveqd | |- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 24 | 19 23 | eqtr4d | |- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 25 | 24 | ralrimivva | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 26 | 14 25 | jca | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) |
| 27 | 6 10 15 20 | ismgmhm | |- ( F e. ( S MgmHom T ) <-> ( ( S e. Mgm /\ T e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) ) |
| 28 | 5 26 27 | sylanbrc | |- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) |