This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| Assertion | resmgmhm | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MgmHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| 2 | mgmhmrcl | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) | |
| 3 | 2 | simprd | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝑇 ∈ Mgm ) |
| 4 | 1 | submgmmgm | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑆 ) → 𝑈 ∈ Mgm ) |
| 5 | 3 4 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 8 | 6 7 | mgmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 9 | 6 | submgmss | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 10 | fssres | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
| 12 | 9 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 13 | 1 6 | ressbas2 | ⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 15 | 14 | feq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
| 16 | 11 15 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) | |
| 18 | 9 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 19 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 20 | 18 19 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 22 | 18 21 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 23 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 24 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 25 | 6 23 24 | mgmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 17 20 22 25 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | 23 | submgmcl | ⊢ ( ( 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 28 | 27 | 3expb | ⊢ ( ( 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 29 | 28 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 30 | fvres | ⊢ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
| 32 | fvres | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 33 | fvres | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 34 | 32 33 | oveqan12d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 36 | 26 31 35 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 37 | 36 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 38 | 1 23 | ressplusg | ⊢ ( 𝑋 ∈ ( SubMgm ‘ 𝑆 ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 40 | 39 | oveqd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 41 | 40 | fveqeq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 42 | 14 41 | raleqbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 43 | 14 42 | raleqbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 44 | 37 43 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 45 | 16 44 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 47 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 48 | 46 7 47 24 | ismgmhm | ⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MgmHom 𝑇 ) ↔ ( ( 𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) ) |
| 49 | 5 45 48 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ 𝑋 ∈ ( SubMgm ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MgmHom 𝑇 ) ) |