This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmgmhm.u | |- U = ( S |`s X ) |
|
| Assertion | resmgmhm | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( F |` X ) e. ( U MgmHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmgmhm.u | |- U = ( S |`s X ) |
|
| 2 | mgmhmrcl | |- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |
|
| 3 | 2 | simprd | |- ( F e. ( S MgmHom T ) -> T e. Mgm ) |
| 4 | 1 | submgmmgm | |- ( X e. ( SubMgm ` S ) -> U e. Mgm ) |
| 5 | 3 4 | anim12ci | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( U e. Mgm /\ T e. Mgm ) ) |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 8 | 6 7 | mgmhmf | |- ( F e. ( S MgmHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 9 | 6 | submgmss | |- ( X e. ( SubMgm ` S ) -> X C_ ( Base ` S ) ) |
| 10 | fssres | |- ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
| 12 | 9 | adantl | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> X C_ ( Base ` S ) ) |
| 13 | 1 6 | ressbas2 | |- ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) |
| 14 | 12 13 | syl | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> X = ( Base ` U ) ) |
| 15 | 14 | feq2d | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) |
| 16 | 11 15 | mpbid | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) |
| 17 | simpll | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> F e. ( S MgmHom T ) ) |
|
| 18 | 9 | ad2antlr | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> X C_ ( Base ` S ) ) |
| 19 | simprl | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 20 | 18 19 | sseldd | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. ( Base ` S ) ) |
| 21 | simprr | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
|
| 22 | 18 21 | sseldd | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. ( Base ` S ) ) |
| 23 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 24 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 25 | 6 23 24 | mgmhmlin | |- ( ( F e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 26 | 17 20 22 25 | syl3anc | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 27 | 23 | submgmcl | |- ( ( X e. ( SubMgm ` S ) /\ x e. X /\ y e. X ) -> ( x ( +g ` S ) y ) e. X ) |
| 28 | 27 | 3expb | |- ( ( X e. ( SubMgm ` S ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
| 29 | 28 | adantll | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
| 30 | fvres | |- ( ( x ( +g ` S ) y ) e. X -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) |
|
| 31 | 29 30 | syl | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) |
| 32 | fvres | |- ( x e. X -> ( ( F |` X ) ` x ) = ( F ` x ) ) |
|
| 33 | fvres | |- ( y e. X -> ( ( F |` X ) ` y ) = ( F ` y ) ) |
|
| 34 | 32 33 | oveqan12d | |- ( ( x e. X /\ y e. X ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 35 | 34 | adantl | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 36 | 26 31 35 | 3eqtr4d | |- ( ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 37 | 36 | ralrimivva | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 38 | 1 23 | ressplusg | |- ( X e. ( SubMgm ` S ) -> ( +g ` S ) = ( +g ` U ) ) |
| 39 | 38 | adantl | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( +g ` S ) = ( +g ` U ) ) |
| 40 | 39 | oveqd | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` U ) y ) ) |
| 41 | 40 | fveqeq2d | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 42 | 14 41 | raleqbidv | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 43 | 14 42 | raleqbidv | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 44 | 37 43 | mpbid | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 45 | 16 44 | jca | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 46 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 47 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 48 | 46 7 47 24 | ismgmhm | |- ( ( F |` X ) e. ( U MgmHom T ) <-> ( ( U e. Mgm /\ T e. Mgm ) /\ ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) ) |
| 49 | 5 45 48 | sylanbrc | |- ( ( F e. ( S MgmHom T ) /\ X e. ( SubMgm ` S ) ) -> ( F |` X ) e. ( U MgmHom T ) ) |