This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submagmas are closed under the magma operation. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| Assertion | submgmcl | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submgmcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 2 | submgmrcl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | 3 1 | issubmgm | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| 6 | 5 | ibi | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 7 | 6 | simprd | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 8 | ovrspc2v | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ∧ 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
| 11 | 10 | 3impb | ⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |