This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| reslmhm2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) | ||
| Assertion | reslmhm2b | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | reslmhm2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 9 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑆 ∈ LMod ) |
| 11 | simpl1 | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑇 ∈ LMod ) | |
| 12 | simpl2 | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑋 ∈ 𝐿 ) | |
| 13 | 1 2 | lsslmod | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑈 ∈ LMod ) |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑈 ∈ LMod ) |
| 15 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 16 | 1 15 | resssca | ⊢ ( 𝑋 ∈ 𝐿 → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 18 | 6 15 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 19 | 17 18 | sylan9req | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
| 20 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 21 | 2 | lsssubg | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 22 | 1 | resghm2b | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 23 | 21 22 | stoic3 | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 25 | 20 24 | sylan2 | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 26 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 27 | 6 8 3 4 26 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | 27 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | simpll2 | ⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑋 ∈ 𝐿 ) | |
| 31 | 1 26 | ressvsca | ⊢ ( 𝑋 ∈ 𝐿 → ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 32 | 31 | oveqd | ⊢ ( 𝑋 ∈ 𝐿 → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 | 30 32 | syl | ⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 29 33 | eqtrd | ⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 3 4 5 6 7 8 10 14 19 25 34 | islmhmd | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) |
| 36 | simpr | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) | |
| 37 | simpl1 | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝑇 ∈ LMod ) | |
| 38 | simpl2 | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝑋 ∈ 𝐿 ) | |
| 39 | 1 2 | reslmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 41 | 35 40 | impbida | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) ) |