This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm2.u | |- U = ( T |`s X ) |
|
| reslmhm2.l | |- L = ( LSubSp ` T ) |
||
| Assertion | reslmhm2b | |- ( ( T e. LMod /\ X e. L /\ ran F C_ X ) -> ( F e. ( S LMHom T ) <-> F e. ( S LMHom U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm2.u | |- U = ( T |`s X ) |
|
| 2 | reslmhm2.l | |- L = ( LSubSp ` T ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 5 | eqid | |- ( .s ` U ) = ( .s ` U ) |
|
| 6 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 7 | eqid | |- ( Scalar ` U ) = ( Scalar ` U ) |
|
| 8 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 9 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 10 | 9 | adantl | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> S e. LMod ) |
| 11 | simpl1 | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> T e. LMod ) |
|
| 12 | simpl2 | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> X e. L ) |
|
| 13 | 1 2 | lsslmod | |- ( ( T e. LMod /\ X e. L ) -> U e. LMod ) |
| 14 | 11 12 13 | syl2anc | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> U e. LMod ) |
| 15 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 16 | 1 15 | resssca | |- ( X e. L -> ( Scalar ` T ) = ( Scalar ` U ) ) |
| 17 | 16 | 3ad2ant2 | |- ( ( T e. LMod /\ X e. L /\ ran F C_ X ) -> ( Scalar ` T ) = ( Scalar ` U ) ) |
| 18 | 6 15 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 19 | 17 18 | sylan9req | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> ( Scalar ` U ) = ( Scalar ` S ) ) |
| 20 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
|
| 21 | 2 | lsssubg | |- ( ( T e. LMod /\ X e. L ) -> X e. ( SubGrp ` T ) ) |
| 22 | 1 | resghm2b | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 23 | 21 22 | stoic3 | |- ( ( T e. LMod /\ X e. L /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 24 | 23 | biimpa | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S GrpHom T ) ) -> F e. ( S GrpHom U ) ) |
| 25 | 20 24 | sylan2 | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> F e. ( S GrpHom U ) ) |
| 26 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 27 | 6 8 3 4 26 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 28 | 27 | 3expb | |- ( ( F e. ( S LMHom T ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 29 | 28 | adantll | |- ( ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 30 | simpll2 | |- ( ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> X e. L ) |
|
| 31 | 1 26 | ressvsca | |- ( X e. L -> ( .s ` T ) = ( .s ` U ) ) |
| 32 | 31 | oveqd | |- ( X e. L -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 33 | 30 32 | syl | |- ( ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 34 | 29 33 | eqtrd | |- ( ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 35 | 3 4 5 6 7 8 10 14 19 25 34 | islmhmd | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom T ) ) -> F e. ( S LMHom U ) ) |
| 36 | simpr | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom U ) ) -> F e. ( S LMHom U ) ) |
|
| 37 | simpl1 | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom U ) ) -> T e. LMod ) |
|
| 38 | simpl2 | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom U ) ) -> X e. L ) |
|
| 39 | 1 2 | reslmhm2 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> F e. ( S LMHom T ) ) |
| 40 | 36 37 38 39 | syl3anc | |- ( ( ( T e. LMod /\ X e. L /\ ran F C_ X ) /\ F e. ( S LMHom U ) ) -> F e. ( S LMHom T ) ) |
| 41 | 35 40 | impbida | |- ( ( T e. LMod /\ X e. L /\ ran F C_ X ) -> ( F e. ( S LMHom T ) <-> F e. ( S LMHom U ) ) ) |