This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm2.u | |- U = ( T |`s X ) |
|
| reslmhm2.l | |- L = ( LSubSp ` T ) |
||
| Assertion | reslmhm2 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> F e. ( S LMHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm2.u | |- U = ( T |`s X ) |
|
| 2 | reslmhm2.l | |- L = ( LSubSp ` T ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 5 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 6 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 7 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 8 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 9 | lmhmlmod1 | |- ( F e. ( S LMHom U ) -> S e. LMod ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> S e. LMod ) |
| 11 | simp2 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> T e. LMod ) |
|
| 12 | 1 7 | resssca | |- ( X e. L -> ( Scalar ` T ) = ( Scalar ` U ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> ( Scalar ` T ) = ( Scalar ` U ) ) |
| 14 | eqid | |- ( Scalar ` U ) = ( Scalar ` U ) |
|
| 15 | 6 14 | lmhmsca | |- ( F e. ( S LMHom U ) -> ( Scalar ` U ) = ( Scalar ` S ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> ( Scalar ` U ) = ( Scalar ` S ) ) |
| 17 | 13 16 | eqtrd | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 18 | lmghm | |- ( F e. ( S LMHom U ) -> F e. ( S GrpHom U ) ) |
|
| 19 | 18 | 3ad2ant1 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> F e. ( S GrpHom U ) ) |
| 20 | 2 | lsssubg | |- ( ( T e. LMod /\ X e. L ) -> X e. ( SubGrp ` T ) ) |
| 21 | 20 | 3adant1 | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> X e. ( SubGrp ` T ) ) |
| 22 | 1 | resghm2 | |- ( ( F e. ( S GrpHom U ) /\ X e. ( SubGrp ` T ) ) -> F e. ( S GrpHom T ) ) |
| 23 | 19 21 22 | syl2anc | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> F e. ( S GrpHom T ) ) |
| 24 | eqid | |- ( .s ` U ) = ( .s ` U ) |
|
| 25 | 6 8 3 4 24 | lmhmlin | |- ( ( F e. ( S LMHom U ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 26 | 25 | 3expb | |- ( ( F e. ( S LMHom U ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 27 | 26 | 3ad2antl1 | |- ( ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 28 | simpl3 | |- ( ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> X e. L ) |
|
| 29 | 1 5 | ressvsca | |- ( X e. L -> ( .s ` T ) = ( .s ` U ) ) |
| 30 | 29 | oveqd | |- ( X e. L -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 31 | 28 30 | syl | |- ( ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` U ) ( F ` y ) ) ) |
| 32 | 27 31 | eqtr4d | |- ( ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) /\ ( x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 33 | 3 4 5 6 7 8 10 11 17 23 32 | islmhmd | |- ( ( F e. ( S LMHom U ) /\ T e. LMod /\ X e. L ) -> F e. ( S LMHom T ) ) |