This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of resghm2b . (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resghm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| Assertion | resghm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resghm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) | |
| 3 | subgsubm | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) | |
| 4 | 1 | resmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 6 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) → 𝑆 ∈ Grp ) | |
| 7 | subgrcl | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) → 𝑇 ∈ Grp ) | |
| 8 | ghmmhmb | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
| 10 | 5 9 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |