This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | remulg | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 2 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 3 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 1 2 3 4 | cnsubglem | ⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
| 6 | eqid | ⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) | |
| 7 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 8 | eqid | ⊢ ( .g ‘ ℝfld ) = ( .g ‘ ℝfld ) | |
| 9 | 6 7 8 | subgmulg | ⊢ ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) |
| 10 | 5 9 | mp3an1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) |
| 11 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 13 | cnfldmulg | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 14 | 12 13 | syldan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 15 | 10 14 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |