This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | remulg | |- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( x e. RR -> x e. CC ) |
|
| 2 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 3 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | 1 2 3 4 | cnsubglem | |- RR e. ( SubGrp ` CCfld ) |
| 6 | eqid | |- ( .g ` CCfld ) = ( .g ` CCfld ) |
|
| 7 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 8 | eqid | |- ( .g ` RRfld ) = ( .g ` RRfld ) |
|
| 9 | 6 7 8 | subgmulg | |- ( ( RR e. ( SubGrp ` CCfld ) /\ N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) |
| 10 | 5 9 | mp3an1 | |- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) |
| 11 | simpr | |- ( ( N e. ZZ /\ A e. RR ) -> A e. RR ) |
|
| 12 | 11 | recnd | |- ( ( N e. ZZ /\ A e. RR ) -> A e. CC ) |
| 13 | cnfldmulg | |- ( ( N e. ZZ /\ A e. CC ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) |
|
| 14 | 12 13 | syldan | |- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) |
| 15 | 10 14 | eqtr3d | |- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) ) |