This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcnf.1 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| fsumcnf.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| fsumcnf.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumcnf.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | fsumcnf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcnf.1 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | fsumcnf.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | fsumcnf.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumcnf.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 Σ 𝑘 ∈ 𝐴 𝐵 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 8 | 6 7 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 9 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 10 | 9 | sumeq2sdv | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 11 | 5 8 10 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 12 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 13 | 12 7 9 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 14 | 13 4 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 15 | 1 2 3 14 | fsumcn | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 16 | 11 15 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |