This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015) (Revised by Stefan O'Rear, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralxpmap.j | ⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralxpmap | ⊢ ( 𝐽 ∈ 𝑇 → ( ∀ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpmap.j | ⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vex | ⊢ 𝑔 ∈ V | |
| 3 | snex | ⊢ { 〈 𝐽 , 𝑦 〉 } ∈ V | |
| 4 | 2 3 | unex | ⊢ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ V |
| 5 | simpr | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) | |
| 6 | elmapex | ⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 8 | elmapg | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 : 𝑇 ⟶ 𝑆 ) |
| 11 | simpl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝐽 ∈ 𝑇 ) | |
| 12 | 10 11 | ffvelcdmd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ) |
| 13 | difss | ⊢ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 | |
| 14 | fssres | ⊢ ( ( 𝑓 : 𝑇 ⟶ 𝑆 ∧ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) | |
| 15 | 10 13 14 | sylancl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 16 | 6 | simpld | ⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → 𝑆 ∈ V ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑆 ∈ V ) |
| 18 | 7 | simprd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑇 ∈ V ) |
| 19 | 18 | difexd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
| 20 | 17 19 | elmapd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ↔ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) ) |
| 21 | 15 20 | mpbird | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) |
| 22 | 10 | ffnd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 Fn 𝑇 ) |
| 23 | fnsnsplit | ⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝐽 ∈ 𝑇 ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) | |
| 24 | 22 11 23 | syl2anc | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 25 | opeq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → 〈 𝐽 , 𝑦 〉 = 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 ) | |
| 26 | 25 | sneqd | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → { 〈 𝐽 , 𝑦 〉 } = { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) |
| 27 | 26 | uneq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
| 28 | 27 | eqeq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ↔ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
| 29 | uneq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) | |
| 30 | 29 | eqeq2d | ⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ↔ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
| 31 | 28 30 | rspc2ev | ⊢ ( ( ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ∧ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ∧ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
| 32 | 12 21 24 31 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
| 33 | 32 | ex | ⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
| 34 | elmapi | ⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) | |
| 35 | 34 | ad2antll | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
| 36 | f1osng | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } ) | |
| 37 | f1of | ⊢ ( { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 39 | 38 | elvd | ⊢ ( 𝐽 ∈ 𝑇 → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 40 | 39 | adantr | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
| 41 | disjdifr | ⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ | |
| 42 | 41 | a1i | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) |
| 43 | fun | ⊢ ( ( ( 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ∧ { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) ∧ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) | |
| 44 | 35 40 42 43 | syl21anc | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
| 45 | simpl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝐽 ∈ 𝑇 ) | |
| 46 | 45 | snssd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝐽 } ⊆ 𝑇 ) |
| 47 | undifr | ⊢ ( { 𝐽 } ⊆ 𝑇 ↔ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = 𝑇 ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = 𝑇 ) |
| 49 | 48 | feq2d | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) ) |
| 50 | 44 49 | mpbid | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
| 51 | ssidd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ⊆ 𝑆 ) | |
| 52 | snssi | ⊢ ( 𝑦 ∈ 𝑆 → { 𝑦 } ⊆ 𝑆 ) | |
| 53 | 52 | ad2antrl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝑦 } ⊆ 𝑆 ) |
| 54 | 51 53 | unssd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∪ { 𝑦 } ) ⊆ 𝑆 ) |
| 55 | 50 54 | fssd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) |
| 56 | elmapex | ⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) | |
| 57 | 56 | ad2antll | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) |
| 58 | 57 | simpld | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ∈ V ) |
| 59 | ssun1 | ⊢ 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) | |
| 60 | undif1 | ⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = ( 𝑇 ∪ { 𝐽 } ) | |
| 61 | 57 | simprd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
| 62 | snex | ⊢ { 𝐽 } ∈ V | |
| 63 | unexg | ⊢ ( ( ( 𝑇 ∖ { 𝐽 } ) ∈ V ∧ { 𝐽 } ∈ V ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) | |
| 64 | 61 62 63 | sylancl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) |
| 65 | 60 64 | eqeltrrid | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∪ { 𝐽 } ) ∈ V ) |
| 66 | ssexg | ⊢ ( ( 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) ∧ ( 𝑇 ∪ { 𝐽 } ) ∈ V ) → 𝑇 ∈ V ) | |
| 67 | 59 65 66 | sylancr | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑇 ∈ V ) |
| 68 | 58 67 | elmapd | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) ) |
| 69 | 55 68 | mpbird | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) |
| 70 | eleq1 | ⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) ) | |
| 71 | 69 70 | syl5ibrcom | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
| 72 | 71 | rexlimdvva | ⊢ ( 𝐽 ∈ 𝑇 → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
| 73 | 33 72 | impbid | ⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
| 74 | 1 | adantl | ⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 75 | 4 73 74 | ralxpxfr2d | ⊢ ( 𝐽 ∈ 𝑇 → ( ∀ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝜓 ) ) |