This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a universal quantifier between one variable with pair-like semantics and two. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxpxfr2d.a | ⊢ 𝐴 ∈ V | |
| ralxpxfr2d.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 ) ) | ||
| ralxpxfr2d.c | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ralxpxfr2d | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxpxfr2d.a | ⊢ 𝐴 ∈ V | |
| 2 | ralxpxfr2d.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 ) ) | |
| 3 | ralxpxfr2d.c | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| 5 | 2 | imbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 → 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 6 | 5 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 8 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ) | |
| 9 | ralcom4 | ⊢ ( ∀ 𝑧 ∈ 𝐷 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ) | |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 11 | r19.23v | ⊢ ( ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) | |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑦 ∈ 𝐶 ( ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) |
| 13 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐶 ( ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ) | |
| 14 | 12 13 | bitr2i | ⊢ ( ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 16 | 8 10 15 | 3bitr4ri | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 17 | 7 16 | bitrdi | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 18 | 3 | pm5.74da | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( 𝑥 = 𝐴 → 𝜒 ) ) ) |
| 19 | 18 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜒 ) ) ) |
| 20 | biidd | ⊢ ( 𝑥 = 𝐴 → ( 𝜒 ↔ 𝜒 ) ) | |
| 21 | 1 20 | ceqsalv | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜒 ) ↔ 𝜒 ) |
| 22 | 19 21 | bitrdi | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜒 ) ) |
| 23 | 22 | 2ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 𝜒 ) ) |
| 24 | 17 23 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐷 𝜒 ) ) |