This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsnsplit | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 3 | resundi | ⊢ ( 𝐹 ↾ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ ( 𝐹 ↾ { 𝑋 } ) ) | |
| 4 | difsnid | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) |
| 6 | 5 | reseq2d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( 𝐹 ↾ 𝐴 ) ) |
| 7 | fnressn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) | |
| 8 | 7 | uneq2d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ ( 𝐹 ↾ { 𝑋 } ) ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 9 | 3 6 8 | 3eqtr3a | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 10 | 2 9 | eqtr3d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |