This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.23v extended to two variables. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.23vv | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
| 3 | 19.23v | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) |