This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp , B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | rexiunxp | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 | 2 | raliunxp | ⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ) |
| 4 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 6 | 3 5 | bitri | ⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 7 | 6 | notbii | ⊢ ( ¬ ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) |
| 8 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ¬ ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ¬ 𝜑 ) | |
| 9 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ ∃ 𝑧 ∈ 𝐵 𝜓 ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝜓 ) |