This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | triun | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 2 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 4 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 | |
| 5 | 3 4 | nfss | ⊢ Ⅎ 𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 6 | trss | ⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵 ) ) | |
| 7 | 6 | imp | ⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
| 8 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 9 | sstr2 | ⊢ ( 𝑦 ⊆ 𝐵 → ( 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 10 | 7 8 9 | syl2imc | ⊢ ( 𝑥 ∈ 𝐴 → ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 11 | 5 10 | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 12 | 2 11 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 13 | 1 12 | sylan2b | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 14 | 13 | ralrimiva | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 15 | dftr3 | ⊢ ( Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 16 | 14 15 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵 ) |