This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011) (Revised by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwtr | ⊢ ( Tr 𝐴 ↔ Tr 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | sseq1i | ⊢ ( ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴 ) |
| 3 | df-tr | ⊢ ( Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ) | |
| 4 | dftr4 | ⊢ ( Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴 ) | |
| 5 | 2 3 4 | 3bitr4ri | ⊢ ( Tr 𝐴 ↔ Tr 𝒫 𝐴 ) |