This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient structure of a non-unital ring is a non-unital ring ( qusring2 analog). (Contributed by AV, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusrng.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusrng.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusrng.p | |- .+ = ( +g ` R ) |
||
| qusrng.t | |- .x. = ( .r ` R ) |
||
| qusrng.r | |- ( ph -> .~ Er V ) |
||
| qusrng.e1 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
||
| qusrng.e2 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
||
| qusrng.x | |- ( ph -> R e. Rng ) |
||
| Assertion | qusrng | |- ( ph -> U e. Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusrng.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusrng.p | |- .+ = ( +g ` R ) |
|
| 4 | qusrng.t | |- .x. = ( .r ` R ) |
|
| 5 | qusrng.r | |- ( ph -> .~ Er V ) |
|
| 6 | qusrng.e1 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
|
| 7 | qusrng.e2 | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
|
| 8 | qusrng.x | |- ( ph -> R e. Rng ) |
|
| 9 | eqid | |- ( u e. V |-> [ u ] .~ ) = ( u e. V |-> [ u ] .~ ) |
|
| 10 | fvex | |- ( Base ` R ) e. _V |
|
| 11 | 2 10 | eqeltrdi | |- ( ph -> V e. _V ) |
| 12 | erex | |- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
|
| 13 | 5 11 12 | sylc | |- ( ph -> .~ e. _V ) |
| 14 | 1 2 9 13 8 | qusval | |- ( ph -> U = ( ( u e. V |-> [ u ] .~ ) "s R ) ) |
| 15 | 1 2 9 13 8 | quslem | |- ( ph -> ( u e. V |-> [ u ] .~ ) : V -onto-> ( V /. .~ ) ) |
| 16 | 8 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> R e. Rng ) |
| 17 | simprl | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
|
| 18 | 2 | eleq2d | |- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 20 | 17 19 | mpbid | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. ( Base ` R ) ) |
| 21 | simprr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) |
|
| 22 | 2 | eleq2d | |- ( ph -> ( y e. V <-> y e. ( Base ` R ) ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( y e. V <-> y e. ( Base ` R ) ) ) |
| 24 | 21 23 | mpbid | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. ( Base ` R ) ) |
| 25 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 26 | 25 3 | rngacl | |- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 27 | 16 20 24 26 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
| 28 | 2 | eleq2d | |- ( ph -> ( ( x .+ y ) e. V <-> ( x .+ y ) e. ( Base ` R ) ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( x .+ y ) e. V <-> ( x .+ y ) e. ( Base ` R ) ) ) |
| 30 | 27 29 | mpbird | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 31 | 5 11 9 30 6 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .+ b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .+ q ) ) ) ) |
| 32 | 25 4 | rngcl | |- ( ( R e. Rng /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
| 33 | 16 20 24 32 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
| 34 | 2 | eleq2d | |- ( ph -> ( ( x .x. y ) e. V <-> ( x .x. y ) e. ( Base ` R ) ) ) |
| 35 | 34 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( ( x .x. y ) e. V <-> ( x .x. y ) e. ( Base ` R ) ) ) |
| 36 | 33 35 | mpbird | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 37 | 5 11 9 36 7 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .x. b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .x. q ) ) ) ) |
| 38 | 14 2 3 4 15 31 37 8 | imasrng | |- ( ph -> U e. Rng ) |