This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| qusinv.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | ||
| qusinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| qusinv.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| Assertion | qusinv | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | qusinv.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 3 | qusinv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | qusinv.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 5 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 8 | 2 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
| 9 | 7 8 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 12 | 1 2 10 11 | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 13 | 9 12 | mpd3an3 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 14 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 15 | 2 10 14 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 7 15 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 | eceq1d | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 18 | 1 14 | qus0 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
| 20 | 13 17 19 | 3eqtrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) |
| 21 | 1 | qusgrp | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐻 ∈ Grp ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 24 | 1 2 23 | quseccl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 25 | 1 2 23 | quseccl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 26 | 9 25 | syldan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 27 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 28 | 23 11 27 4 | grpinvid1 | ⊢ ( ( 𝐻 ∈ Grp ∧ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 29 | 22 24 26 28 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 30 | 20 29 | mpbird | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) |