This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| qusinv.v | |- V = ( Base ` G ) |
||
| qusinv.i | |- I = ( invg ` G ) |
||
| qusinv.n | |- N = ( invg ` H ) |
||
| Assertion | qusinv | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | qusinv.v | |- V = ( Base ` G ) |
|
| 3 | qusinv.i | |- I = ( invg ` G ) |
|
| 4 | qusinv.n | |- N = ( invg ` H ) |
|
| 5 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 6 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 7 | 5 6 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 8 | 2 3 | grpinvcl | |- ( ( G e. Grp /\ X e. V ) -> ( I ` X ) e. V ) |
| 9 | 7 8 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( I ` X ) e. V ) |
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 12 | 1 2 10 11 | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ ( I ` X ) e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) ) |
| 13 | 9 12 | mpd3an3 | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) ) |
| 14 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 15 | 2 10 14 3 | grprinv | |- ( ( G e. Grp /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) ) |
| 16 | 7 15 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) ) |
| 17 | 16 | eceq1d | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) = [ ( 0g ` G ) ] ( G ~QG S ) ) |
| 18 | 1 14 | qus0 | |- ( S e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) |
| 19 | 18 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) |
| 20 | 13 17 19 | 3eqtrd | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) |
| 21 | 1 | qusgrp | |- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
| 22 | 21 | adantr | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> H e. Grp ) |
| 23 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 24 | 1 2 23 | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
| 25 | 1 2 23 | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ ( I ` X ) e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) |
| 26 | 9 25 | syldan | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) |
| 27 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 28 | 23 11 27 4 | grpinvid1 | |- ( ( H e. Grp /\ [ X ] ( G ~QG S ) e. ( Base ` H ) /\ [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) ) |
| 29 | 22 24 26 28 | syl3anc | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) ) |
| 30 | 20 29 | mpbird | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) ) |