This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| qus0subg.s | ⊢ 𝑆 = { 0 } | ||
| qus0subg.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| qus0subg.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | ||
| qus0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | qus0subgadd | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | qus0subg.s | ⊢ 𝑆 = { 0 } | |
| 3 | qus0subg.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 4 | qus0subg.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | |
| 5 | qus0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 6 | 4 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝑈 = ( 𝐺 /s ∼ ) ) |
| 7 | 5 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 8 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 2 8 | eqeltrid | ⊢ ( 𝐺 ∈ Grp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 5 3 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝐵 ) |
| 11 | 9 10 | syl | ⊢ ( 𝐺 ∈ Grp → ∼ Er 𝐵 ) |
| 12 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 13 | 1 | 0nsg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 14 | 2 13 | eqeltrid | ⊢ ( 𝐺 ∈ Grp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 15 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 16 | 5 3 15 | eqgcpbl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∼ ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∼ 𝑝 ∧ 𝑦 ∼ 𝑞 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∼ ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ) ) |
| 18 | 5 15 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ∈ 𝐵 ) |
| 19 | 18 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( +g ‘ 𝐺 ) 𝑞 ) ∈ 𝐵 ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 21 | 6 7 11 12 17 19 15 20 | qusaddval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ ) |
| 22 | 21 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ ) |
| 23 | 1 2 5 3 | eqg0subgecsn | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ) → [ 𝑎 ] ∼ = { 𝑎 } ) |
| 24 | 23 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑎 ] ∼ = { 𝑎 } ) |
| 25 | 1 2 5 3 | eqg0subgecsn | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝐵 ) → [ 𝑏 ] ∼ = { 𝑏 } ) |
| 26 | 25 | adantrl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑏 ] ∼ = { 𝑏 } ) |
| 27 | 24 26 | oveq12d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑈 ) [ 𝑏 ] ∼ ) = ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) ) |
| 28 | 5 15 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) |
| 30 | 1 2 5 3 | eqg0subgecsn | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐵 ) → [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
| 31 | 29 30 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ] ∼ = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
| 32 | 22 27 31 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |
| 33 | 32 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( { 𝑎 } ( +g ‘ 𝑈 ) { 𝑏 } ) = { ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) } ) |