This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition in a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus0subg.0 | |- .0. = ( 0g ` G ) |
|
| qus0subg.s | |- S = { .0. } |
||
| qus0subg.e | |- .~ = ( G ~QG S ) |
||
| qus0subg.u | |- U = ( G /s .~ ) |
||
| qus0subg.b | |- B = ( Base ` G ) |
||
| Assertion | qus0subgadd | |- ( G e. Grp -> A. a e. B A. b e. B ( { a } ( +g ` U ) { b } ) = { ( a ( +g ` G ) b ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus0subg.0 | |- .0. = ( 0g ` G ) |
|
| 2 | qus0subg.s | |- S = { .0. } |
|
| 3 | qus0subg.e | |- .~ = ( G ~QG S ) |
|
| 4 | qus0subg.u | |- U = ( G /s .~ ) |
|
| 5 | qus0subg.b | |- B = ( Base ` G ) |
|
| 6 | 4 | a1i | |- ( G e. Grp -> U = ( G /s .~ ) ) |
| 7 | 5 | a1i | |- ( G e. Grp -> B = ( Base ` G ) ) |
| 8 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 9 | 2 8 | eqeltrid | |- ( G e. Grp -> S e. ( SubGrp ` G ) ) |
| 10 | 5 3 | eqger | |- ( S e. ( SubGrp ` G ) -> .~ Er B ) |
| 11 | 9 10 | syl | |- ( G e. Grp -> .~ Er B ) |
| 12 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 13 | 1 | 0nsg | |- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
| 14 | 2 13 | eqeltrid | |- ( G e. Grp -> S e. ( NrmSGrp ` G ) ) |
| 15 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 16 | 5 3 15 | eqgcpbl | |- ( S e. ( NrmSGrp ` G ) -> ( ( x .~ p /\ y .~ q ) -> ( x ( +g ` G ) y ) .~ ( p ( +g ` G ) q ) ) ) |
| 17 | 14 16 | syl | |- ( G e. Grp -> ( ( x .~ p /\ y .~ q ) -> ( x ( +g ` G ) y ) .~ ( p ( +g ` G ) q ) ) ) |
| 18 | 5 15 | grpcl | |- ( ( G e. Grp /\ p e. B /\ q e. B ) -> ( p ( +g ` G ) q ) e. B ) |
| 19 | 18 | 3expb | |- ( ( G e. Grp /\ ( p e. B /\ q e. B ) ) -> ( p ( +g ` G ) q ) e. B ) |
| 20 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 21 | 6 7 11 12 17 19 15 20 | qusaddval | |- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = [ ( a ( +g ` G ) b ) ] .~ ) |
| 22 | 21 | 3expb | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = [ ( a ( +g ` G ) b ) ] .~ ) |
| 23 | 1 2 5 3 | eqg0subgecsn | |- ( ( G e. Grp /\ a e. B ) -> [ a ] .~ = { a } ) |
| 24 | 23 | adantrr | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ = { a } ) |
| 25 | 1 2 5 3 | eqg0subgecsn | |- ( ( G e. Grp /\ b e. B ) -> [ b ] .~ = { b } ) |
| 26 | 25 | adantrl | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ = { b } ) |
| 27 | 24 26 | oveq12d | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = ( { a } ( +g ` U ) { b } ) ) |
| 28 | 5 15 | grpcl | |- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` G ) b ) e. B ) |
| 29 | 28 | 3expb | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` G ) b ) e. B ) |
| 30 | 1 2 5 3 | eqg0subgecsn | |- ( ( G e. Grp /\ ( a ( +g ` G ) b ) e. B ) -> [ ( a ( +g ` G ) b ) ] .~ = { ( a ( +g ` G ) b ) } ) |
| 31 | 29 30 | syldan | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ ( a ( +g ` G ) b ) ] .~ = { ( a ( +g ` G ) b ) } ) |
| 32 | 22 27 31 | 3eqtr3d | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( { a } ( +g ` U ) { b } ) = { ( a ( +g ` G ) b ) } ) |
| 33 | 32 | ralrimivva | |- ( G e. Grp -> A. a e. B A. b e. B ( { a } ( +g ` U ) { b } ) = { ( a ( +g ` G ) b ) } ) |