This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | qtopval2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simp1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝐽 ∈ 𝑉 ) | |
| 3 | fof | ⊢ ( 𝐹 : 𝑍 –onto→ 𝑌 → 𝐹 : 𝑍 ⟶ 𝑌 ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝐹 : 𝑍 ⟶ 𝑌 ) |
| 5 | uniexg | ⊢ ( 𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ∪ 𝐽 ∈ V ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ⊆ 𝑋 ) | |
| 9 | 7 8 | ssexd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ∈ V ) |
| 10 | 4 9 | fexd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝐹 ∈ V ) |
| 11 | 1 | qtopval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 12 | 2 10 11 | syl2anc | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 13 | imassrn | ⊢ ( 𝐹 “ 𝑋 ) ⊆ ran 𝐹 | |
| 14 | forn | ⊢ ( 𝐹 : 𝑍 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ran 𝐹 = 𝑌 ) |
| 16 | 13 15 | sseqtrid | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐹 “ 𝑋 ) ⊆ 𝑌 ) |
| 17 | foima | ⊢ ( 𝐹 : 𝑍 –onto→ 𝑌 → ( 𝐹 “ 𝑍 ) = 𝑌 ) | |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐹 “ 𝑍 ) = 𝑌 ) |
| 19 | imass2 | ⊢ ( 𝑍 ⊆ 𝑋 → ( 𝐹 “ 𝑍 ) ⊆ ( 𝐹 “ 𝑋 ) ) | |
| 20 | 8 19 | syl | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐹 “ 𝑍 ) ⊆ ( 𝐹 “ 𝑋 ) ) |
| 21 | 18 20 | eqsstrrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝑌 ⊆ ( 𝐹 “ 𝑋 ) ) |
| 22 | 16 21 | eqssd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
| 23 | 22 | pweqd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → 𝒫 ( 𝐹 “ 𝑋 ) = 𝒫 𝑌 ) |
| 24 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑠 ) ⊆ dom 𝐹 | |
| 25 | 24 4 | fssdm | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( ◡ 𝐹 “ 𝑠 ) ⊆ 𝑍 ) |
| 26 | 25 8 | sstrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( ◡ 𝐹 “ 𝑠 ) ⊆ 𝑋 ) |
| 27 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝑠 ) ⊆ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑠 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑠 ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 ) ) |
| 30 | 23 29 | rabeqbidv | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ) |
| 31 | 12 30 | eqtrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 : 𝑍 –onto→ 𝑌 ∧ 𝑍 ⊆ 𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 𝑌 ∣ ( ◡ 𝐹 “ 𝑠 ) ∈ 𝐽 } ) |