This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | |- X = U. J |
|
| Assertion | qtopval2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P Y | ( `' F " s ) e. J } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | |- X = U. J |
|
| 2 | simp1 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> J e. V ) |
|
| 3 | fof | |- ( F : Z -onto-> Y -> F : Z --> Y ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F : Z --> Y ) |
| 5 | uniexg | |- ( J e. V -> U. J e. _V ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> U. J e. _V ) |
| 7 | 1 6 | eqeltrid | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> X e. _V ) |
| 8 | simp3 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z C_ X ) |
|
| 9 | 7 8 | ssexd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z e. _V ) |
| 10 | 4 9 | fexd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F e. _V ) |
| 11 | 1 | qtopval | |- ( ( J e. V /\ F e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 12 | 2 10 11 | syl2anc | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 13 | imassrn | |- ( F " X ) C_ ran F |
|
| 14 | forn | |- ( F : Z -onto-> Y -> ran F = Y ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ran F = Y ) |
| 16 | 13 15 | sseqtrid | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) C_ Y ) |
| 17 | foima | |- ( F : Z -onto-> Y -> ( F " Z ) = Y ) |
|
| 18 | 17 | 3ad2ant2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) = Y ) |
| 19 | imass2 | |- ( Z C_ X -> ( F " Z ) C_ ( F " X ) ) |
|
| 20 | 8 19 | syl | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) C_ ( F " X ) ) |
| 21 | 18 20 | eqsstrrd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Y C_ ( F " X ) ) |
| 22 | 16 21 | eqssd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) = Y ) |
| 23 | 22 | pweqd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ~P ( F " X ) = ~P Y ) |
| 24 | cnvimass | |- ( `' F " s ) C_ dom F |
|
| 25 | 24 4 | fssdm | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ Z ) |
| 26 | 25 8 | sstrd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ X ) |
| 27 | dfss2 | |- ( ( `' F " s ) C_ X <-> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) |
|
| 28 | 26 27 | sylib | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) |
| 29 | 28 | eleq1d | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( ( `' F " s ) i^i X ) e. J <-> ( `' F " s ) e. J ) ) |
| 30 | 23 29 | rabeqbidv | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } = { s e. ~P Y | ( `' F " s ) e. J } ) |
| 31 | 12 30 | eqtrd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P Y | ( `' F " s ) e. J } ) |