This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | qtopval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | elex | ⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ V ) | |
| 3 | elex | ⊢ ( 𝐹 ∈ 𝑊 → 𝐹 ∈ V ) | |
| 4 | imaexg | ⊢ ( 𝐹 ∈ V → ( 𝐹 “ 𝑋 ) ∈ V ) | |
| 5 | pwexg | ⊢ ( ( 𝐹 “ 𝑋 ) ∈ V → 𝒫 ( 𝐹 “ 𝑋 ) ∈ V ) | |
| 6 | rabexg | ⊢ ( 𝒫 ( 𝐹 “ 𝑋 ) ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝐹 ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) |
| 9 | simpr | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 10 | simpl | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑗 = 𝐽 ) | |
| 11 | 10 | unieqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 12 | 11 1 | eqtr4di | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = 𝑋 ) |
| 13 | 9 12 | imaeq12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( 𝑓 “ ∪ 𝑗 ) = ( 𝐹 “ 𝑋 ) ) |
| 14 | 13 | pweqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝒫 ( 𝑓 “ ∪ 𝑗 ) = 𝒫 ( 𝐹 “ 𝑋 ) ) |
| 15 | 9 | cnveqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ◡ 𝑓 = ◡ 𝐹 ) |
| 16 | 15 | imaeq1d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ◡ 𝑓 “ 𝑠 ) = ( ◡ 𝐹 “ 𝑠 ) ) |
| 17 | 16 12 | ineq12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ) |
| 18 | 17 10 | eleq12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 ↔ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ) ) |
| 19 | 14 18 | rabeqbidv | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 20 | df-qtop | ⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) | |
| 21 | 19 20 | ovmpoga | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ∧ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 22 | 8 21 | mpd3an3 | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 23 | 2 3 22 | syl2an | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |