This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem1 | |- ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 2 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 3 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 4 | sqcl | |- ( m e. CC -> ( m ^ 2 ) e. CC ) |
|
| 5 | 4 | adantl | |- ( ( n e. CC /\ m e. CC ) -> ( m ^ 2 ) e. CC ) |
| 6 | 5 | sqcld | |- ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) ^ 2 ) e. CC ) |
| 7 | 2cn | |- 2 e. CC |
|
| 8 | sqcl | |- ( n e. CC -> ( n ^ 2 ) e. CC ) |
|
| 9 | mulcl | |- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) |
|
| 10 | 4 8 9 | syl2anr | |- ( ( n e. CC /\ m e. CC ) -> ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) |
| 11 | mulcl | |- ( ( 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) |
|
| 12 | 7 10 11 | sylancr | |- ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) e. CC ) |
| 13 | 6 12 | subcld | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) e. CC ) |
| 14 | 8 | adantr | |- ( ( n e. CC /\ m e. CC ) -> ( n ^ 2 ) e. CC ) |
| 15 | 14 | sqcld | |- ( ( n e. CC /\ m e. CC ) -> ( ( n ^ 2 ) ^ 2 ) e. CC ) |
| 16 | mulcl | |- ( ( m e. CC /\ n e. CC ) -> ( m x. n ) e. CC ) |
|
| 17 | 16 | ancoms | |- ( ( n e. CC /\ m e. CC ) -> ( m x. n ) e. CC ) |
| 18 | mulcl | |- ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
|
| 19 | 7 17 18 | sylancr | |- ( ( n e. CC /\ m e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
| 20 | 19 | sqcld | |- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) |
| 21 | 13 15 20 | add32d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 22 | 6 12 20 | subadd23d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) ) |
| 23 | sqmul | |- ( ( 2 e. CC /\ ( m x. n ) e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) |
|
| 24 | 7 17 23 | sylancr | |- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) ) |
| 25 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 26 | 25 | a1i | |- ( ( n e. CC /\ m e. CC ) -> ( 2 ^ 2 ) = 4 ) |
| 27 | sqmul | |- ( ( m e. CC /\ n e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
|
| 28 | 27 | ancoms | |- ( ( n e. CC /\ m e. CC ) -> ( ( m x. n ) ^ 2 ) = ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
| 29 | 26 28 | oveq12d | |- ( ( n e. CC /\ m e. CC ) -> ( ( 2 ^ 2 ) x. ( ( m x. n ) ^ 2 ) ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 30 | 24 29 | eqtrd | |- ( ( n e. CC /\ m e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) = ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 31 | 30 | oveq1d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 32 | 4cn | |- 4 e. CC |
|
| 33 | subdir | |- ( ( 4 e. CC /\ 2 e. CC /\ ( ( m ^ 2 ) x. ( n ^ 2 ) ) e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
|
| 34 | 32 7 10 33 | mp3an12i | |- ( ( n e. CC /\ m e. CC ) -> ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 35 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 36 | 32 7 7 35 | subaddrii | |- ( 4 - 2 ) = 2 |
| 37 | 36 | oveq1i | |- ( ( 4 - 2 ) x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) |
| 38 | 34 37 | eqtr3di | |- ( ( n e. CC /\ m e. CC ) -> ( ( 4 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 39 | 31 38 | eqtrd | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) = ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) |
| 40 | 39 | oveq2d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) ^ 2 ) + ( ( ( 2 x. ( m x. n ) ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 41 | 22 40 | eqtrd | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) ) |
| 42 | 41 | oveq1d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) + ( ( n ^ 2 ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 43 | 21 42 | eqtrd | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 44 | binom2sub | |- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
|
| 45 | 4 8 44 | syl2anr | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 46 | 45 | oveq1d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( ( ( m ^ 2 ) ^ 2 ) - ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) |
| 47 | binom2 | |- ( ( ( m ^ 2 ) e. CC /\ ( n ^ 2 ) e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
|
| 48 | 4 8 47 | syl2anr | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) = ( ( ( ( m ^ 2 ) ^ 2 ) + ( 2 x. ( ( m ^ 2 ) x. ( n ^ 2 ) ) ) ) + ( ( n ^ 2 ) ^ 2 ) ) ) |
| 49 | 43 46 48 | 3eqtr4d | |- ( ( n e. CC /\ m e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) |
| 50 | 49 | 3adant3 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) |
| 51 | 50 | oveq2d | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) |
| 52 | simp3 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> k e. CC ) |
|
| 53 | 4 | 3ad2ant2 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m ^ 2 ) e. CC ) |
| 54 | 8 | 3ad2ant1 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( n ^ 2 ) e. CC ) |
| 55 | 53 54 | subcld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) - ( n ^ 2 ) ) e. CC ) |
| 56 | 52 55 | sqmuld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) ) |
| 57 | 17 | 3adant3 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( m x. n ) e. CC ) |
| 58 | 7 57 18 | sylancr | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( 2 x. ( m x. n ) ) e. CC ) |
| 59 | 52 58 | sqmuld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) |
| 60 | 56 59 | oveq12d | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 61 | sqcl | |- ( k e. CC -> ( k ^ 2 ) e. CC ) |
|
| 62 | 61 | 3ad2ant3 | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( k ^ 2 ) e. CC ) |
| 63 | 55 | sqcld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) e. CC ) |
| 64 | 58 | sqcld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( 2 x. ( m x. n ) ) ^ 2 ) e. CC ) |
| 65 | 62 63 64 | adddid | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) = ( ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) ) + ( ( k ^ 2 ) x. ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 66 | 60 65 | eqtr4d | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k ^ 2 ) x. ( ( ( ( m ^ 2 ) - ( n ^ 2 ) ) ^ 2 ) + ( ( 2 x. ( m x. n ) ) ^ 2 ) ) ) ) |
| 67 | 53 54 | addcld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) |
| 68 | 52 67 | sqmuld | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( ( m ^ 2 ) + ( n ^ 2 ) ) ^ 2 ) ) ) |
| 69 | 51 66 68 | 3eqtr4d | |- ( ( n e. CC /\ m e. CC /\ k e. CC ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 70 | 1 2 3 69 | syl3an | |- ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 71 | oveq1 | |- ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) -> ( A ^ 2 ) = ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) ) |
|
| 72 | oveq1 | |- ( B = ( k x. ( 2 x. ( m x. n ) ) ) -> ( B ^ 2 ) = ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) |
|
| 73 | 71 72 | oveqan12d | |- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) |
| 74 | 73 | 3adant3 | |- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) ) |
| 75 | oveq1 | |- ( C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
|
| 76 | 75 | 3ad2ant3 | |- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( C ^ 2 ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) |
| 77 | 74 76 | eqeq12d | |- ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) <-> ( ( ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) ^ 2 ) + ( ( k x. ( 2 x. ( m x. n ) ) ) ^ 2 ) ) = ( ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ^ 2 ) ) ) |
| 78 | 70 77 | syl5ibrcom | |- ( ( n e. NN /\ m e. NN /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 79 | 78 | 3expa | |- ( ( ( n e. NN /\ m e. NN ) /\ k e. NN ) -> ( ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 80 | 79 | rexlimdva | |- ( ( n e. NN /\ m e. NN ) -> ( E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) ) |
| 81 | 80 | rexlimivv | |- ( E. n e. NN E. m e. NN E. k e. NN ( A = ( k x. ( ( m ^ 2 ) - ( n ^ 2 ) ) ) /\ B = ( k x. ( 2 x. ( m x. n ) ) ) /\ C = ( k x. ( ( m ^ 2 ) + ( n ^ 2 ) ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |