This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsmulg.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsmulg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsmulg.s | ⊢ ∙ = ( .g ‘ 𝑌 ) | ||
| pwsmulg.t | ⊢ · = ( .g ‘ 𝑅 ) | ||
| Assertion | pwsmulg | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsmulg.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsmulg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsmulg.s | ⊢ ∙ = ( .g ‘ 𝑌 ) | |
| 4 | pwsmulg.t | ⊢ · = ( .g ‘ 𝑅 ) | |
| 5 | simpll | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑅 ∈ Mnd ) | |
| 6 | simplr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝐼 ∈ 𝑉 ) | |
| 7 | simpr3 | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝐴 ∈ 𝐼 ) | |
| 8 | 1 2 | pwspjmhm | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| 10 | simpr1 | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑁 ∈ ℕ0 ) | |
| 11 | simpr2 | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 2 3 4 | mhmmulg | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 14 | 1 | pwsmnd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → 𝑌 ∈ Mnd ) |
| 16 | 2 3 15 10 11 | mulgnn0cld | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 ) |
| 17 | fveq1 | ⊢ ( 𝑥 = ( 𝑁 ∙ 𝑋 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) | |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) | |
| 19 | fvex | ⊢ ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ∈ V | |
| 20 | 17 18 19 | fvmpt | ⊢ ( ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 22 | fveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) | |
| 23 | fvex | ⊢ ( 𝑋 ‘ 𝐴 ) ∈ V | |
| 24 | 22 18 23 | fvmpt | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 25 | 11 24 | syl | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| 27 | 13 21 26 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼 ) ) → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |