This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl2gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl2gaf.b | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl2gaf.c | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl2gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl2gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl2gaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl2gaf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl2gaf.5 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) | ||
| Assertion | vtocl2gaf | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl2gaf.b | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl2gaf.c | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | vtocl2gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | vtocl2gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | |
| 6 | vtocl2gaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 7 | vtocl2gaf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 8 | vtocl2gaf.5 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) | |
| 9 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐴 ∈ 𝐶 |
| 10 | 9 5 | nfim | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝐶 → 𝜒 ) |
| 11 | 7 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 → 𝜓 ) ↔ ( 𝐴 ∈ 𝐶 → 𝜒 ) ) ) |
| 12 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 | |
| 13 | 12 4 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐷 → 𝜓 ) |
| 14 | 6 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ∈ 𝐷 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐷 → 𝜓 ) ) ) |
| 15 | 8 | ex | ⊢ ( 𝑥 ∈ 𝐶 → ( 𝑦 ∈ 𝐷 → 𝜑 ) ) |
| 16 | 1 13 14 15 | vtoclgaf | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝑦 ∈ 𝐷 → 𝜓 ) ) |
| 17 | 16 | com12 | ⊢ ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐶 → 𝜓 ) ) |
| 18 | 3 10 11 17 | vtoclgaf | ⊢ ( 𝐵 ∈ 𝐷 → ( 𝐴 ∈ 𝐶 → 𝜒 ) ) |
| 19 | 18 | impcom | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |