This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| pwfseqlem4.x | |- ( ph -> X C_ A ) |
||
| pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
||
| pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
||
| pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
||
| pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
||
| Assertion | pwfseqlem1 | |- ( ( ph /\ ps ) -> D e. ( U_ n e. _om ( A ^m n ) \ U_ n e. _om ( x ^m n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| 2 | pwfseqlem4.x | |- ( ph -> X C_ A ) |
|
| 3 | pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
|
| 4 | pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
|
| 5 | pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
|
| 6 | pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 7 | 1 | adantr | |- ( ( ph /\ ps ) -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
| 8 | f1f | |- ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G : ~P A --> U_ n e. _om ( A ^m n ) ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ ps ) -> G : ~P A --> U_ n e. _om ( A ^m n ) ) |
| 10 | ssrab2 | |- { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ x |
|
| 11 | simprl1 | |- ( ( ph /\ ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) -> x C_ A ) |
|
| 12 | 4 11 | sylan2b | |- ( ( ph /\ ps ) -> x C_ A ) |
| 13 | 10 12 | sstrid | |- ( ( ph /\ ps ) -> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ A ) |
| 14 | vex | |- x e. _V |
|
| 15 | 14 | rabex | |- { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. _V |
| 16 | 15 | elpw | |- ( { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A <-> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ A ) |
| 17 | 13 16 | sylibr | |- ( ( ph /\ ps ) -> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) |
| 18 | 9 17 | ffvelcdmd | |- ( ( ph /\ ps ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. U_ n e. _om ( A ^m n ) ) |
| 19 | 6 18 | eqeltrid | |- ( ( ph /\ ps ) -> D e. U_ n e. _om ( A ^m n ) ) |
| 20 | pm5.19 | |- -. ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 21 | 5 | adantr | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
| 22 | f1f | |- ( K : U_ n e. _om ( x ^m n ) -1-1-> x -> K : U_ n e. _om ( x ^m n ) --> x ) |
|
| 23 | 21 22 | syl | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) --> x ) |
| 24 | ffvelcdm | |- ( ( K : U_ n e. _om ( x ^m n ) --> x /\ D e. U_ n e. _om ( x ^m n ) ) -> ( K ` D ) e. x ) |
|
| 25 | 23 24 | sylancom | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( K ` D ) e. x ) |
| 26 | f1f1orn | |- ( K : U_ n e. _om ( x ^m n ) -1-1-> x -> K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K ) |
|
| 27 | 21 26 | syl | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K ) |
| 28 | f1ocnvfv1 | |- ( ( K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = D ) |
|
| 29 | 27 28 | sylancom | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = D ) |
| 30 | f1fn | |- ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G Fn ~P A ) |
|
| 31 | 7 30 | syl | |- ( ( ph /\ ps ) -> G Fn ~P A ) |
| 32 | fnfvelrn | |- ( ( G Fn ~P A /\ { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. ran G ) |
|
| 33 | 31 17 32 | syl2anc | |- ( ( ph /\ ps ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. ran G ) |
| 34 | 6 33 | eqeltrid | |- ( ( ph /\ ps ) -> D e. ran G ) |
| 35 | 34 | adantr | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> D e. ran G ) |
| 36 | 29 35 | eqeltrd | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) e. ran G ) |
| 37 | fveq2 | |- ( y = ( K ` D ) -> ( `' K ` y ) = ( `' K ` ( K ` D ) ) ) |
|
| 38 | 37 | eleq1d | |- ( y = ( K ` D ) -> ( ( `' K ` y ) e. ran G <-> ( `' K ` ( K ` D ) ) e. ran G ) ) |
| 39 | id | |- ( y = ( K ` D ) -> y = ( K ` D ) ) |
|
| 40 | 2fveq3 | |- ( y = ( K ` D ) -> ( `' G ` ( `' K ` y ) ) = ( `' G ` ( `' K ` ( K ` D ) ) ) ) |
|
| 41 | 39 40 | eleq12d | |- ( y = ( K ` D ) -> ( y e. ( `' G ` ( `' K ` y ) ) <-> ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) |
| 42 | 41 | notbid | |- ( y = ( K ` D ) -> ( -. y e. ( `' G ` ( `' K ` y ) ) <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) |
| 43 | 38 42 | anbi12d | |- ( y = ( K ` D ) -> ( ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) <-> ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) |
| 44 | fveq2 | |- ( w = y -> ( `' K ` w ) = ( `' K ` y ) ) |
|
| 45 | 44 | eleq1d | |- ( w = y -> ( ( `' K ` w ) e. ran G <-> ( `' K ` y ) e. ran G ) ) |
| 46 | id | |- ( w = y -> w = y ) |
|
| 47 | 2fveq3 | |- ( w = y -> ( `' G ` ( `' K ` w ) ) = ( `' G ` ( `' K ` y ) ) ) |
|
| 48 | 46 47 | eleq12d | |- ( w = y -> ( w e. ( `' G ` ( `' K ` w ) ) <-> y e. ( `' G ` ( `' K ` y ) ) ) ) |
| 49 | 48 | notbid | |- ( w = y -> ( -. w e. ( `' G ` ( `' K ` w ) ) <-> -. y e. ( `' G ` ( `' K ` y ) ) ) ) |
| 50 | 45 49 | anbi12d | |- ( w = y -> ( ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) <-> ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) ) ) |
| 51 | 50 | cbvrabv | |- { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } = { y e. x | ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) } |
| 52 | 43 51 | elrab2 | |- ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> ( ( K ` D ) e. x /\ ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) |
| 53 | anass | |- ( ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) <-> ( ( K ` D ) e. x /\ ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) |
|
| 54 | 52 53 | bitr4i | |- ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) |
| 55 | 54 | baib | |- ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) |
| 56 | 25 36 55 | syl2anc | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) |
| 57 | 29 6 | eqtrdi | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) |
| 58 | 57 | fveq2d | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( `' K ` ( K ` D ) ) ) = ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) ) |
| 59 | f1f1orn | |- ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G : ~P A -1-1-onto-> ran G ) |
|
| 60 | 7 59 | syl | |- ( ( ph /\ ps ) -> G : ~P A -1-1-onto-> ran G ) |
| 61 | f1ocnvfv1 | |- ( ( G : ~P A -1-1-onto-> ran G /\ { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 62 | 60 17 61 | syl2anc | |- ( ( ph /\ ps ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
| 63 | 62 | adantr | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
| 64 | 58 63 | eqtrd | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( `' K ` ( K ` D ) ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
| 65 | 64 | eleq2d | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) <-> ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) |
| 66 | 65 | notbid | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) |
| 67 | 56 66 | bitrd | |- ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) |
| 68 | 67 | ex | |- ( ( ph /\ ps ) -> ( D e. U_ n e. _om ( x ^m n ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) ) |
| 69 | 20 68 | mtoi | |- ( ( ph /\ ps ) -> -. D e. U_ n e. _om ( x ^m n ) ) |
| 70 | 19 69 | eldifd | |- ( ( ph /\ ps ) -> D e. ( U_ n e. _om ( A ^m n ) \ U_ n e. _om ( x ^m n ) ) ) |