This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 2 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | 3 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 5 | elfz0lmr | ⊢ ( 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐽 = 0 ∨ 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∨ 𝐽 = ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | elfzo1 | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝐼 ∈ ℕ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝐹 ) ) ) | |
| 7 | nnnn0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐼 ∈ ℕ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 9 | 6 8 | sylbi | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 11 | fvinim0ffz | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝐽 = 0 → ( 𝑃 ‘ 𝐽 ) = ( 𝑃 ‘ 0 ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝐽 = 0 → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) ↔ ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) ) ) |
| 15 | 14 | ad2antrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) ↔ ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) ) ) |
| 16 | ffun | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → Fun 𝑃 ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝑃 ) |
| 18 | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 19 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 20 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 21 | 19 20 | sstri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 22 | 21 | sseli | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 23 | eleq2 | ⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ dom 𝑃 ↔ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) | |
| 24 | 22 23 | imbitrrid | ⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ dom 𝑃 ) ) |
| 25 | 18 24 | syl | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ dom 𝑃 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐼 ∈ dom 𝑃 ) |
| 27 | 17 26 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃 ) ) |
| 28 | 27 | adantrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃 ) ) |
| 29 | simprr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 30 | funfvima | ⊢ ( ( Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃 ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 31 | 28 29 30 | sylc | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 32 | eleq1 | ⊢ ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 33 | 31 32 | syl5ibcom | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 34 | 15 33 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 35 | nnel | ⊢ ( ¬ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 36 | 34 35 | imbitrrdi | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → ¬ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 37 | 36 | necon2ad | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 38 | 37 | adantrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 39 | 12 38 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 40 | 39 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 41 | 40 | com23 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 42 | 41 | a1d | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 43 | 42 | 3imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 44 | 43 | com12 | ⊢ ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 45 | 44 | a1d | ⊢ ( ( 𝐽 = 0 ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 46 | 45 | ex | ⊢ ( 𝐽 = 0 → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 47 | fvres | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( 𝑃 ‘ 𝐼 ) ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( 𝑃 ‘ 𝐼 ) ) |
| 49 | 48 | adantl | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( 𝑃 ‘ 𝐼 ) ) |
| 50 | 49 | eqcomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) ) |
| 51 | fvres | ⊢ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) = ( 𝑃 ‘ 𝐽 ) ) | |
| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) = ( 𝑃 ‘ 𝐽 ) ) |
| 53 | 52 | eqcomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐽 ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) ) |
| 54 | 50 53 | eqeq12d | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) ↔ ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) ) ) |
| 55 | fssres | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | |
| 56 | 21 55 | mpan2 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 57 | df-f1 | ⊢ ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 58 | 57 | biimpri | ⊢ ( ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| 59 | 56 58 | sylan | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| 60 | 59 | 3adant3 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| 61 | simpr | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 62 | 61 | ancomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 63 | f1veqaeq | ⊢ ( ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ∧ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) → 𝐼 = 𝐽 ) ) | |
| 64 | 60 62 63 | syl2an2r | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) = ( ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) → 𝐼 = 𝐽 ) ) |
| 65 | 54 64 | sylbid | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ∧ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → 𝐼 = 𝐽 ) ) |
| 66 | 65 | ancoms | ⊢ ( ( ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → 𝐼 = 𝐽 ) ) |
| 67 | 66 | necon3d | ⊢ ( ( ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) → ( 𝐼 ≠ 𝐽 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 68 | 67 | ex | ⊢ ( ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝐼 ≠ 𝐽 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 69 | 68 | com23 | ⊢ ( ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 70 | 69 | ex | ⊢ ( 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 71 | 9 | adantl | ⊢ ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 72 | 71 11 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 73 | fveq2 | ⊢ ( 𝐽 = ( ♯ ‘ 𝐹 ) → ( 𝑃 ‘ 𝐽 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 74 | 73 | eqeq2d | ⊢ ( 𝐽 = ( ♯ ‘ 𝐹 ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) ↔ ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 75 | 74 | ad2antrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) ↔ ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 76 | 27 | adantrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃 ) ) |
| 77 | simprr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 78 | 76 77 30 | sylc | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 79 | eleq1 | ⊢ ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 80 | 78 79 | syl5ibcom | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 81 | 75 80 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 82 | nnel | ⊢ ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 83 | 81 82 | imbitrrdi | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 𝐽 ) → ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 84 | 83 | necon2ad | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 85 | 84 | adantld | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 86 | 72 85 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 87 | 86 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 88 | 87 | com23 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 89 | 88 | a1d | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 90 | 89 | 3imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 91 | 90 | com12 | ⊢ ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 92 | 91 | a1d | ⊢ ( ( 𝐽 = ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) |
| 93 | 92 | ex | ⊢ ( 𝐽 = ( ♯ ‘ 𝐹 ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 94 | 46 70 93 | 3jaoi | ⊢ ( ( 𝐽 = 0 ∨ 𝐽 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∨ 𝐽 = ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 95 | 5 94 | syl | ⊢ ( 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ≠ 𝐽 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 96 | 95 | 3imp21 | ⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 97 | 96 | com12 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 98 | 97 | 3exp | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 99 | 2 4 98 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) ) ) |
| 100 | 99 | 3imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 101 | 1 100 | sylbi | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) ) |
| 102 | 101 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐽 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ 𝐽 ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝐽 ) ) |