This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdivtx | |- ( ( F ( Paths ` G ) P /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) ) -> ( P ` I ) =/= ( P ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 2 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 5 | elfz0lmr | |- ( J e. ( 0 ... ( # ` F ) ) -> ( J = 0 \/ J e. ( 1 ..^ ( # ` F ) ) \/ J = ( # ` F ) ) ) |
|
| 6 | elfzo1 | |- ( I e. ( 1 ..^ ( # ` F ) ) <-> ( I e. NN /\ ( # ` F ) e. NN /\ I < ( # ` F ) ) ) |
|
| 7 | nnnn0 | |- ( ( # ` F ) e. NN -> ( # ` F ) e. NN0 ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( I e. NN /\ ( # ` F ) e. NN /\ I < ( # ` F ) ) -> ( # ` F ) e. NN0 ) |
| 9 | 6 8 | sylbi | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. NN0 ) |
| 10 | 9 | adantl | |- ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) |
| 11 | fvinim0ffz | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
|
| 12 | 10 11 | sylan2 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 13 | fveq2 | |- ( J = 0 -> ( P ` J ) = ( P ` 0 ) ) |
|
| 14 | 13 | eqeq2d | |- ( J = 0 -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` 0 ) ) ) |
| 15 | 14 | ad2antrl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` 0 ) ) ) |
| 16 | ffun | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun P ) |
|
| 17 | 16 | adantr | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> Fun P ) |
| 18 | fdm | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
|
| 19 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 20 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 21 | 19 20 | sstri | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 22 | 21 | sseli | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 0 ... ( # ` F ) ) ) |
| 23 | eleq2 | |- ( dom P = ( 0 ... ( # ` F ) ) -> ( I e. dom P <-> I e. ( 0 ... ( # ` F ) ) ) ) |
|
| 24 | 22 23 | imbitrrid | |- ( dom P = ( 0 ... ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> I e. dom P ) ) |
| 25 | 18 24 | syl | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> I e. dom P ) ) |
| 26 | 25 | imp | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> I e. dom P ) |
| 27 | 17 26 | jca | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( Fun P /\ I e. dom P ) ) |
| 28 | 27 | adantrl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( Fun P /\ I e. dom P ) ) |
| 29 | simprr | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) |
|
| 30 | funfvima | |- ( ( Fun P /\ I e. dom P ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 31 | 28 29 30 | sylc | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
| 32 | eleq1 | |- ( ( P ` I ) = ( P ` 0 ) -> ( ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 33 | 31 32 | syl5ibcom | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` 0 ) -> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 34 | 15 33 | sylbid | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 35 | nnel | |- ( -. ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 36 | 34 35 | imbitrrdi | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> -. ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 37 | 36 | necon2ad | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 38 | 37 | adantrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 39 | 12 38 | sylbid | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 40 | 39 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 41 | 40 | com23 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 42 | 41 | a1d | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 43 | 42 | 3imp | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 44 | 43 | com12 | |- ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 45 | 44 | a1d | |- ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 46 | 45 | ex | |- ( J = 0 -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 47 | fvres | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) |
|
| 48 | 47 | adantl | |- ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) |
| 49 | 48 | adantl | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) |
| 50 | 49 | eqcomd | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) ) |
| 51 | fvres | |- ( J e. ( 1 ..^ ( # ` F ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) = ( P ` J ) ) |
|
| 52 | 51 | ad2antrl | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) = ( P ` J ) ) |
| 53 | 52 | eqcomd | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` J ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) ) |
| 54 | 50 53 | eqeq12d | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) ) ) |
| 55 | fssres | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) ) |
|
| 56 | 21 55 | mpan2 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) ) |
| 57 | df-f1 | |- ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 58 | 57 | biimpri | |- ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 59 | 56 58 | sylan | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 60 | 59 | 3adant3 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
| 61 | simpr | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) |
|
| 62 | 61 | ancomd | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 1 ..^ ( # ` F ) ) ) ) |
| 63 | f1veqaeq | |- ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) -> I = J ) ) |
|
| 64 | 60 62 63 | syl2an2r | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) -> I = J ) ) |
| 65 | 54 64 | sylbid | |- ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> I = J ) ) |
| 66 | 65 | ancoms | |- ( ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) /\ ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) -> ( ( P ` I ) = ( P ` J ) -> I = J ) ) |
| 67 | 66 | necon3d | |- ( ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) /\ ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) -> ( I =/= J -> ( P ` I ) =/= ( P ` J ) ) ) |
| 68 | 67 | ex | |- ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( I =/= J -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 69 | 68 | com23 | |- ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 70 | 69 | ex | |- ( J e. ( 1 ..^ ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 71 | 9 | adantl | |- ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) |
| 72 | 71 11 | sylan2 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 73 | fveq2 | |- ( J = ( # ` F ) -> ( P ` J ) = ( P ` ( # ` F ) ) ) |
|
| 74 | 73 | eqeq2d | |- ( J = ( # ` F ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` ( # ` F ) ) ) ) |
| 75 | 74 | ad2antrl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` ( # ` F ) ) ) ) |
| 76 | 27 | adantrl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( Fun P /\ I e. dom P ) ) |
| 77 | simprr | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) |
|
| 78 | 76 77 30 | sylc | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
| 79 | eleq1 | |- ( ( P ` I ) = ( P ` ( # ` F ) ) -> ( ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 80 | 78 79 | syl5ibcom | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` ( # ` F ) ) -> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 81 | 75 80 | sylbid | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 82 | nnel | |- ( -. ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 83 | 81 82 | imbitrrdi | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> -. ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 84 | 83 | necon2ad | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 85 | 84 | adantld | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 86 | 72 85 | sylbid | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 87 | 86 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 88 | 87 | com23 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 89 | 88 | a1d | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 90 | 89 | 3imp | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 91 | 90 | com12 | |- ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 92 | 91 | a1d | |- ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) |
| 93 | 92 | ex | |- ( J = ( # ` F ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 94 | 46 70 93 | 3jaoi | |- ( ( J = 0 \/ J e. ( 1 ..^ ( # ` F ) ) \/ J = ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 95 | 5 94 | syl | |- ( J e. ( 0 ... ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 96 | 95 | 3imp21 | |- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 97 | 96 | com12 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 98 | 97 | 3exp | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 99 | 2 4 98 | 3syl | |- ( F ( Trails ` G ) P -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) |
| 100 | 99 | 3imp | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 101 | 1 100 | sylbi | |- ( F ( Paths ` G ) P -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) |
| 102 | 101 | imp | |- ( ( F ( Paths ` G ) P /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) ) -> ( P ` I ) =/= ( P ` J ) ) |