This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdadjvtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0l | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 2 | simpr | ⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 3 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 4 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 5 | 1zzd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ∈ ℤ ) | |
| 6 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 7 | 6 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 8 | simpr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 < ( ♯ ‘ 𝐹 ) ) | |
| 9 | fzolb | ⊢ ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 1 < ( ♯ ‘ 𝐹 ) ) ) | |
| 10 | 5 7 8 9 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 11 | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 12 | 11 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 14 | 13 | a1i | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ≠ 0 ) |
| 15 | 10 12 14 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) |
| 16 | 15 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) ) |
| 17 | 3 4 16 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) ) |
| 18 | 17 | impcom | ⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) |
| 19 | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) | |
| 20 | 2 18 19 | syl2anc | ⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 21 | 20 | necomd | ⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 22 | 21 | 3adant1 | ⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 23 | fveq2 | ⊢ ( 𝐼 = 0 → ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) ) | |
| 24 | fv0p1e1 | ⊢ ( 𝐼 = 0 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 25 | 23 24 | neeq12d | ⊢ ( 𝐼 = 0 → ( ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 27 | 22 26 | mpbird | ⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
| 28 | 27 | 3exp | ⊢ ( 𝐼 = 0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 29 | simp3 | ⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 30 | id | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 31 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 32 | 31 | sseli | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 33 | fzofzp1 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 35 | elfzoelz | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ℤ ) | |
| 36 | 35 | zcnd | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ℂ ) |
| 37 | 1cnd | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ∈ ℂ ) | |
| 38 | 13 | a1i | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ≠ 0 ) |
| 39 | 36 37 38 | 3jca | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
| 40 | addn0nid | ⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → ( 𝐼 + 1 ) ≠ 𝐼 ) | |
| 41 | 40 | necomd | ⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
| 42 | 39 41 | syl | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
| 43 | 30 34 42 | 3jca | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) |
| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) |
| 45 | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) | |
| 46 | 29 44 45 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
| 47 | 46 | 3exp | ⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 48 | 28 47 | jaoi | ⊢ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 49 | 1 48 | syl | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 50 | 49 | 3imp31 | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |