This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdadjvtx | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ I e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0l | |- ( I e. ( 0 ..^ ( # ` F ) ) -> ( I = 0 \/ I e. ( 1 ..^ ( # ` F ) ) ) ) |
|
| 2 | simpr | |- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> F ( Paths ` G ) P ) |
|
| 3 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 4 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 5 | 1zzd | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 e. ZZ ) |
|
| 6 | nn0z | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
|
| 7 | 6 | adantr | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> ( # ` F ) e. ZZ ) |
| 8 | simpr | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 < ( # ` F ) ) |
|
| 9 | fzolb | |- ( 1 e. ( 1 ..^ ( # ` F ) ) <-> ( 1 e. ZZ /\ ( # ` F ) e. ZZ /\ 1 < ( # ` F ) ) ) |
|
| 10 | 5 7 8 9 | syl3anbrc | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 e. ( 1 ..^ ( # ` F ) ) ) |
| 11 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 12 | 11 | adantr | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 13 | ax-1ne0 | |- 1 =/= 0 |
|
| 14 | 13 | a1i | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 =/= 0 ) |
| 15 | 10 12 14 | 3jca | |- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) |
| 16 | 15 | ex | |- ( ( # ` F ) e. NN0 -> ( 1 < ( # ` F ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) ) |
| 17 | 3 4 16 | 3syl | |- ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) ) |
| 18 | 17 | impcom | |- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) |
| 19 | pthdivtx | |- ( ( F ( Paths ` G ) P /\ ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
|
| 20 | 2 18 19 | syl2anc | |- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 21 | 20 | necomd | |- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 22 | 21 | 3adant1 | |- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 23 | fveq2 | |- ( I = 0 -> ( P ` I ) = ( P ` 0 ) ) |
|
| 24 | fv0p1e1 | |- ( I = 0 -> ( P ` ( I + 1 ) ) = ( P ` 1 ) ) |
|
| 25 | 23 24 | neeq12d | |- ( I = 0 -> ( ( P ` I ) =/= ( P ` ( I + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( ( P ` I ) =/= ( P ` ( I + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 27 | 22 26 | mpbird | |- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
| 28 | 27 | 3exp | |- ( I = 0 -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
| 29 | simp3 | |- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> F ( Paths ` G ) P ) |
|
| 30 | id | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) |
|
| 31 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 32 | 31 | sseli | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 0 ..^ ( # ` F ) ) ) |
| 33 | fzofzp1 | |- ( I e. ( 0 ..^ ( # ` F ) ) -> ( I + 1 ) e. ( 0 ... ( # ` F ) ) ) |
|
| 34 | 32 33 | syl | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 35 | elfzoelz | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ZZ ) |
|
| 36 | 35 | zcnd | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. CC ) |
| 37 | 1cnd | |- ( I e. ( 1 ..^ ( # ` F ) ) -> 1 e. CC ) |
|
| 38 | 13 | a1i | |- ( I e. ( 1 ..^ ( # ` F ) ) -> 1 =/= 0 ) |
| 39 | 36 37 38 | 3jca | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) ) |
| 40 | addn0nid | |- ( ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> ( I + 1 ) =/= I ) |
|
| 41 | 40 | necomd | |- ( ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> I =/= ( I + 1 ) ) |
| 42 | 39 41 | syl | |- ( I e. ( 1 ..^ ( # ` F ) ) -> I =/= ( I + 1 ) ) |
| 43 | 30 34 42 | 3jca | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) |
| 44 | 43 | 3ad2ant1 | |- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) |
| 45 | pthdivtx | |- ( ( F ( Paths ` G ) P /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
|
| 46 | 29 44 45 | syl2anc | |- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
| 47 | 46 | 3exp | |- ( I e. ( 1 ..^ ( # ` F ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
| 48 | 28 47 | jaoi | |- ( ( I = 0 \/ I e. ( 1 ..^ ( # ` F ) ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
| 49 | 1 48 | syl | |- ( I e. ( 0 ..^ ( # ` F ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
| 50 | 49 | 3imp31 | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ I e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |