This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0l | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) | |
| 2 | 1 | simp2bi | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 3 | fzo0sn0fzo1 | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) | |
| 4 | 3 | eleq2d | ⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ↔ 𝐾 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) ) |
| 5 | elun | ⊢ ( 𝐾 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ↔ ( 𝐾 ∈ { 0 } ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) | |
| 6 | elsni | ⊢ ( 𝐾 ∈ { 0 } → 𝐾 = 0 ) | |
| 7 | 6 | orim1i | ⊢ ( ( 𝐾 ∈ { 0 } ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |
| 8 | 5 7 | sylbi | ⊢ ( 𝐾 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |
| 9 | 4 8 | biimtrdi | ⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) ) |
| 10 | 2 9 | mpcom | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 = 0 ∨ 𝐾 ∈ ( 1 ..^ 𝑁 ) ) ) |