This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of Enderton p. 137. (Contributed by NM, 22-Jun-1998) (Revised by Mario Carneiro, 16-Nov-2014) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssnn | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssss | ⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) | |
| 2 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐵 ⊊ 𝐴 ∧ 𝐴 ∈ ω ) → 𝐵 ∈ V ) |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ V ) |
| 5 | psseq2 | ⊢ ( 𝑧 = ∅ → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ∅ ) ) | |
| 6 | rexeq | ⊢ ( 𝑧 = ∅ → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑧 = ∅ → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
| 8 | 7 | albidv | ⊢ ( 𝑧 = ∅ → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) ) ) |
| 9 | psseq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝑦 ) ) | |
| 10 | rexeq | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 13 | psseq2 | ⊢ ( 𝑧 = suc 𝑦 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ suc 𝑦 ) ) | |
| 14 | rexeq | ⊢ ( 𝑧 = suc 𝑦 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 16 | 15 | albidv | ⊢ ( 𝑧 = suc 𝑦 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 17 | psseq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝐴 ) ) | |
| 18 | rexeq | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
| 20 | 19 | albidv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑧 → ∃ 𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) ) |
| 21 | npss0 | ⊢ ¬ 𝑤 ⊊ ∅ | |
| 22 | 21 | pm2.21i | ⊢ ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
| 23 | 22 | ax-gen | ⊢ ∀ 𝑤 ( 𝑤 ⊊ ∅ → ∃ 𝑥 ∈ ∅ 𝑤 ≈ 𝑥 ) |
| 24 | nfv | ⊢ Ⅎ 𝑤 𝑦 ∈ ω | |
| 25 | nfa1 | ⊢ Ⅎ 𝑤 ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) | |
| 26 | elequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 27 | 26 | biimpcd | ⊢ ( 𝑧 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑦 ∈ 𝑤 ) ) |
| 28 | 27 | con3d | ⊢ ( 𝑧 ∈ 𝑤 → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦 ) ) |
| 30 | pssss | ⊢ ( 𝑤 ⊊ suc 𝑦 → 𝑤 ⊆ suc 𝑦 ) | |
| 31 | 30 | sseld | ⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ suc 𝑦 ) ) |
| 32 | elsuci | ⊢ ( 𝑧 ∈ suc 𝑦 → ( 𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ) ) | |
| 33 | 32 | ord | ⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 = 𝑦 ) ) |
| 34 | 33 | con1d | ⊢ ( 𝑧 ∈ suc 𝑦 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 35 | 31 34 | syl6 | ⊢ ( 𝑤 ⊊ suc 𝑦 → ( 𝑧 ∈ 𝑤 → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 37 | 29 36 | syld | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤 ) → ( ¬ 𝑦 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
| 38 | 37 | impancom | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ 𝑦 ) ) |
| 39 | 38 | ssrdv | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) → 𝑤 ⊆ 𝑦 ) |
| 40 | 39 | anim1i | ⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) |
| 41 | dfpss2 | ⊢ ( 𝑤 ⊊ 𝑦 ↔ ( 𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦 ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → 𝑤 ⊊ 𝑦 ) |
| 43 | elelsuc | ⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ suc 𝑦 ) | |
| 44 | 43 | anim1i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑤 ≈ 𝑥 ) → ( 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑥 ) ) |
| 45 | 44 | reximi2 | ⊢ ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 46 | 42 45 | imim12i | ⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( ( 𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤 ) ∧ ¬ 𝑤 = 𝑦 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 47 | 46 | exp4c | ⊢ ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 48 | 47 | sps | ⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 50 | 49 | com4t | ⊢ ( ¬ 𝑦 ∈ 𝑤 → ( ¬ 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 51 | anidm | ⊢ ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) ↔ 𝑤 ⊊ suc 𝑦 ) | |
| 52 | ssdif | ⊢ ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) | |
| 53 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 54 | orddif | ⊢ ( Ord 𝑦 → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) | |
| 55 | 53 54 | syl | ⊢ ( 𝑦 ∈ ω → 𝑦 = ( suc 𝑦 ∖ { 𝑦 } ) ) |
| 56 | 55 | sseq2d | ⊢ ( 𝑦 ∈ ω → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊆ ( suc 𝑦 ∖ { 𝑦 } ) ) ) |
| 57 | 52 56 | imbitrrid | ⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊆ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
| 58 | 30 57 | syl5 | ⊢ ( 𝑦 ∈ ω → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ) ) |
| 59 | pssnel | ⊢ ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) ) | |
| 60 | eleq2 | ⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) ↔ 𝑧 ∈ 𝑦 ) ) | |
| 61 | eldifi | ⊢ ( 𝑧 ∈ ( 𝑤 ∖ { 𝑦 } ) → 𝑧 ∈ 𝑤 ) | |
| 62 | 60 61 | biimtrrdi | ⊢ ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 63 | 62 | adantl | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 64 | eleq1a | ⊢ ( 𝑦 ∈ 𝑤 → ( 𝑧 = 𝑦 → 𝑧 ∈ 𝑤 ) ) | |
| 65 | 33 64 | sylan9r | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 67 | 63 66 | pm2.61d | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) ∧ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) → 𝑧 ∈ 𝑤 ) |
| 68 | 67 | ex | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) = 𝑦 → 𝑧 ∈ 𝑤 ) ) |
| 69 | 68 | con3d | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦 ) → ( ¬ 𝑧 ∈ 𝑤 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 70 | 69 | expimpd | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 71 | 70 | exlimdv | ⊢ ( 𝑦 ∈ 𝑤 → ( ∃ 𝑧 ( 𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤 ) → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 72 | 59 71 | syl5 | ⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ⊊ suc 𝑦 → ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) |
| 73 | 58 72 | im2anan9r | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
| 74 | 51 73 | biimtrrid | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) ) |
| 75 | dfpss2 | ⊢ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊆ 𝑦 ∧ ¬ ( 𝑤 ∖ { 𝑦 } ) = 𝑦 ) ) | |
| 76 | 74 75 | imbitrrdi | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑤 ⊊ suc 𝑦 → ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) |
| 77 | psseq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊊ 𝑦 ↔ 𝑧 ⊊ 𝑦 ) ) | |
| 78 | breq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑧 ≈ 𝑥 ) ) | |
| 79 | 78 | rexbidv | ⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
| 80 | 77 79 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) ) |
| 81 | 80 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ↔ ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ) |
| 82 | vex | ⊢ 𝑤 ∈ V | |
| 83 | 82 | difexi | ⊢ ( 𝑤 ∖ { 𝑦 } ) ∈ V |
| 84 | psseq1 | ⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ⊊ 𝑦 ↔ ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 ) ) | |
| 85 | breq1 | ⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( 𝑧 ≈ 𝑥 ↔ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) | |
| 86 | 85 | rexbidv | ⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 87 | 84 86 | imbi12d | ⊢ ( 𝑧 = ( 𝑤 ∖ { 𝑦 } ) → ( ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) ↔ ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) ) |
| 88 | 83 87 | spcv | ⊢ ( ∀ 𝑧 ( 𝑧 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 89 | 81 88 | sylbi | ⊢ ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( ( 𝑤 ∖ { 𝑦 } ) ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 90 | 76 89 | sylan9 | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 91 | ordsucelsuc | ⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ suc 𝑦 ) ) | |
| 92 | 91 | biimpd | ⊢ ( Ord 𝑦 → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 93 | 53 92 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 94 | 93 | adantl | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( 𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦 ) ) |
| 95 | 94 | adantrd | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → suc 𝑥 ∈ suc 𝑦 ) ) |
| 96 | elnn | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) → 𝑥 ∈ ω ) | |
| 97 | snex | ⊢ { 〈 𝑦 , 𝑥 〉 } ∈ V | |
| 98 | vex | ⊢ 𝑦 ∈ V | |
| 99 | vex | ⊢ 𝑥 ∈ V | |
| 100 | 98 99 | f1osn | ⊢ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } |
| 101 | f1oen3g | ⊢ ( ( { 〈 𝑦 , 𝑥 〉 } ∈ V ∧ { 〈 𝑦 , 𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } ) → { 𝑦 } ≈ { 𝑥 } ) | |
| 102 | 97 100 101 | mp2an | ⊢ { 𝑦 } ≈ { 𝑥 } |
| 103 | 102 | jctr | ⊢ ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ) |
| 104 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 105 | orddisj | ⊢ ( Ord 𝑥 → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) | |
| 106 | 104 105 | syl | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∩ { 𝑥 } ) = ∅ ) |
| 107 | disjdifr | ⊢ ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ | |
| 108 | 106 107 | jctil | ⊢ ( 𝑥 ∈ ω → ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) |
| 109 | unen | ⊢ ( ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ { 𝑦 } ≈ { 𝑥 } ) ∧ ( ( ( 𝑤 ∖ { 𝑦 } ) ∩ { 𝑦 } ) = ∅ ∧ ( 𝑥 ∩ { 𝑥 } ) = ∅ ) ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) | |
| 110 | 103 108 109 | syl2an | ⊢ ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) |
| 111 | difsnid | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) = 𝑤 ) | |
| 112 | 111 | eqcomd | ⊢ ( 𝑦 ∈ 𝑤 → 𝑤 = ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ) |
| 113 | df-suc | ⊢ suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) | |
| 114 | 113 | a1i | ⊢ ( 𝑦 ∈ 𝑤 → suc 𝑥 = ( 𝑥 ∪ { 𝑥 } ) ) |
| 115 | 112 114 | breq12d | ⊢ ( 𝑦 ∈ 𝑤 → ( 𝑤 ≈ suc 𝑥 ↔ ( ( 𝑤 ∖ { 𝑦 } ) ∪ { 𝑦 } ) ≈ ( 𝑥 ∪ { 𝑥 } ) ) ) |
| 116 | 110 115 | imbitrrid | ⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑤 ≈ suc 𝑥 ) ) |
| 117 | 96 116 | sylan2i | ⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω ) ) → 𝑤 ≈ suc 𝑥 ) ) |
| 118 | 117 | exp4d | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∈ ω → 𝑤 ≈ suc 𝑥 ) ) ) ) |
| 119 | 118 | com24 | ⊢ ( 𝑦 ∈ 𝑤 → ( 𝑦 ∈ ω → ( 𝑥 ∈ 𝑦 → ( ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → 𝑤 ≈ suc 𝑥 ) ) ) ) |
| 120 | 119 | imp4b | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → 𝑤 ≈ suc 𝑥 ) ) |
| 121 | 95 120 | jcad | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) ) ) |
| 122 | breq2 | ⊢ ( 𝑧 = suc 𝑥 → ( 𝑤 ≈ 𝑧 ↔ 𝑤 ≈ suc 𝑥 ) ) | |
| 123 | 122 | rspcev | ⊢ ( ( suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
| 124 | 121 123 | syl6 | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
| 125 | 124 | exlimdv | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) → ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) ) |
| 126 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 ) ) | |
| 127 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑧 ) ) | |
| 128 | 127 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ↔ ∃ 𝑧 ∈ suc 𝑦 𝑤 ≈ 𝑧 ) |
| 129 | 125 126 128 | 3imtr4g | ⊢ ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 130 | 129 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ∃ 𝑥 ∈ 𝑦 ( 𝑤 ∖ { 𝑦 } ) ≈ 𝑥 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 131 | 90 130 | syld | ⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω ) ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 132 | 131 | expl | ⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 133 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ω ↔ 𝑦 ∈ ω ) ) | |
| 134 | 133 | pm5.32i | ⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) ↔ ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) ) |
| 135 | 82 | eqelsuc | ⊢ ( 𝑤 = 𝑦 → 𝑤 ∈ suc 𝑦 ) |
| 136 | enrefnn | ⊢ ( 𝑤 ∈ ω → 𝑤 ≈ 𝑤 ) | |
| 137 | breq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑤 ) ) | |
| 138 | 137 | rspcev | ⊢ ( ( 𝑤 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑤 ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 139 | 135 136 138 | syl2an | ⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) |
| 140 | 139 | 2a1d | ⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 141 | 134 140 | sylbir | ⊢ ( ( 𝑤 = 𝑦 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 142 | 141 | ex | ⊢ ( 𝑤 = 𝑦 → ( 𝑦 ∈ ω → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 143 | 142 | adantrd | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) ) |
| 144 | 143 | pm2.43d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 145 | 50 132 144 | pm2.61ii | ⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) |
| 146 | 145 | ex | ⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 147 | 24 25 146 | alrimd | ⊢ ( 𝑦 ∈ ω → ( ∀ 𝑤 ( 𝑤 ⊊ 𝑦 → ∃ 𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ) → ∀ 𝑤 ( 𝑤 ⊊ suc 𝑦 → ∃ 𝑥 ∈ suc 𝑦 𝑤 ≈ 𝑥 ) ) ) |
| 148 | 8 12 16 20 23 147 | finds | ⊢ ( 𝐴 ∈ ω → ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ) |
| 149 | psseq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) | |
| 150 | breq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥 ) ) | |
| 151 | 150 | rexbidv | ⊢ ( 𝑤 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
| 152 | 149 151 | imbi12d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) ↔ ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 153 | 152 | spcgv | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑤 ( 𝑤 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ) → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 154 | 148 153 | syl5 | ⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 155 | 154 | com3l | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) ) |
| 156 | 155 | imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ V → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) ) |
| 157 | 4 156 | mpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) |