This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑆 ) | ||
| psrvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| psrvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| Assertion | psrvscafval | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑆 ) | |
| 3 | psrvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | psrvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | psrvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | psrvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 9 | simpl | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐼 ∈ V ) | |
| 10 | 1 3 6 4 9 | psrbas | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 12 | 1 4 7 11 | psrplusg | ⊢ ( +g ‘ 𝑆 ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 14 | 1 4 5 13 6 | psrmulr | ⊢ ( .r ‘ 𝑆 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 15 | eqid | ⊢ ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) | |
| 16 | eqidd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ) | |
| 17 | simpr | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) | |
| 18 | 1 3 7 5 8 6 10 12 14 15 16 9 17 | psrval | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 20 | 3 | fvexi | ⊢ 𝐾 ∈ V |
| 21 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 22 | 20 21 | mpoex | ⊢ ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ∈ V |
| 23 | psrvalstr | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 | |
| 24 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 25 | snsstp2 | ⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 } ⊆ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } | |
| 26 | ssun2 | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) | |
| 27 | 25 26 | sstri | ⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
| 28 | 23 24 27 | strfv | ⊢ ( ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ∈ V → ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 29 | 22 28 | ax-mp | ⊢ ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑆 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 30 | 19 2 29 | 3eqtr4g | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ) |
| 31 | eqid | ⊢ ∅ = ∅ | |
| 32 | fn0 | ⊢ ( ∅ Fn ∅ ↔ ∅ = ∅ ) | |
| 33 | 31 32 | mpbir | ⊢ ∅ Fn ∅ |
| 34 | reldmpsr | ⊢ Rel dom mPwSer | |
| 35 | 34 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 36 | 1 35 | eqtrid | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
| 37 | 36 | fveq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ ∅ ) ) |
| 38 | 24 | str0 | ⊢ ∅ = ( ·𝑠 ‘ ∅ ) |
| 39 | 37 2 38 | 3eqtr4g | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ∅ ) |
| 40 | 34 1 4 | elbasov | ⊢ ( 𝑓 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 41 | 40 | con3i | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ¬ 𝑓 ∈ 𝐵 ) |
| 42 | 41 | eq0rdv | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 43 | 42 | xpeq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐾 × 𝐵 ) = ( 𝐾 × ∅ ) ) |
| 44 | xp0 | ⊢ ( 𝐾 × ∅ ) = ∅ | |
| 45 | 43 44 | eqtrdi | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐾 × 𝐵 ) = ∅ ) |
| 46 | 39 45 | fneq12d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ∙ Fn ( 𝐾 × 𝐵 ) ↔ ∅ Fn ∅ ) ) |
| 47 | 33 46 | mpbiri | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ Fn ( 𝐾 × 𝐵 ) ) |
| 48 | fnov | ⊢ ( ∙ Fn ( 𝐾 × 𝐵 ) ↔ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( 𝑥 ∙ 𝑓 ) ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( 𝑥 ∙ 𝑓 ) ) ) |
| 50 | 41 | pm2.21d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑓 ∈ 𝐵 → ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) = ( 𝑥 ∙ 𝑓 ) ) ) |
| 51 | 50 | a1d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑥 ∈ 𝐾 → ( 𝑓 ∈ 𝐵 → ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) = ( 𝑥 ∙ 𝑓 ) ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ∧ 𝑥 ∈ 𝐾 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) = ( 𝑥 ∙ 𝑓 ) ) |
| 53 | 52 | mpoeq3dva | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( 𝑥 ∙ 𝑓 ) ) ) |
| 54 | 49 53 | eqtr4d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ) |
| 55 | 30 54 | pm2.61i | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |