This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrvsca.s | |- S = ( I mPwSer R ) |
|
| psrvsca.n | |- .xb = ( .s ` S ) |
||
| psrvsca.k | |- K = ( Base ` R ) |
||
| psrvsca.b | |- B = ( Base ` S ) |
||
| psrvsca.m | |- .x. = ( .r ` R ) |
||
| psrvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| Assertion | psrvscafval | |- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrvsca.s | |- S = ( I mPwSer R ) |
|
| 2 | psrvsca.n | |- .xb = ( .s ` S ) |
|
| 3 | psrvsca.k | |- K = ( Base ` R ) |
|
| 4 | psrvsca.b | |- B = ( Base ` S ) |
|
| 5 | psrvsca.m | |- .x. = ( .r ` R ) |
|
| 6 | psrvsca.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 8 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 9 | simpl | |- ( ( I e. _V /\ R e. _V ) -> I e. _V ) |
|
| 10 | 1 3 6 4 9 | psrbas | |- ( ( I e. _V /\ R e. _V ) -> B = ( K ^m D ) ) |
| 11 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 12 | 1 4 7 11 | psrplusg | |- ( +g ` S ) = ( oF ( +g ` R ) |` ( B X. B ) ) |
| 13 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 14 | 1 4 5 13 6 | psrmulr | |- ( .r ` S ) = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
| 15 | eqid | |- ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
|
| 16 | eqidd | |- ( ( I e. _V /\ R e. _V ) -> ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) = ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) ) |
|
| 17 | simpr | |- ( ( I e. _V /\ R e. _V ) -> R e. _V ) |
|
| 18 | 1 3 7 5 8 6 10 12 14 15 16 9 17 | psrval | |- ( ( I e. _V /\ R e. _V ) -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 19 | 18 | fveq2d | |- ( ( I e. _V /\ R e. _V ) -> ( .s ` S ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 20 | 3 | fvexi | |- K e. _V |
| 21 | 4 | fvexi | |- B e. _V |
| 22 | 20 21 | mpoex | |- ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) e. _V |
| 23 | psrvalstr | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) Struct <. 1 , 9 >. |
|
| 24 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
| 25 | snsstp2 | |- { <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. } C_ { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } |
|
| 26 | ssun2 | |- { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) |
|
| 27 | 25 26 | sstri | |- { <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) |
| 28 | 23 24 27 | strfv | |- ( ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) e. _V -> ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 29 | 22 28 | ax-mp | |- ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( D X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 30 | 19 2 29 | 3eqtr4g | |- ( ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) ) |
| 31 | eqid | |- (/) = (/) |
|
| 32 | fn0 | |- ( (/) Fn (/) <-> (/) = (/) ) |
|
| 33 | 31 32 | mpbir | |- (/) Fn (/) |
| 34 | reldmpsr | |- Rel dom mPwSer |
|
| 35 | 34 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 36 | 1 35 | eqtrid | |- ( -. ( I e. _V /\ R e. _V ) -> S = (/) ) |
| 37 | 36 | fveq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( .s ` S ) = ( .s ` (/) ) ) |
| 38 | 24 | str0 | |- (/) = ( .s ` (/) ) |
| 39 | 37 2 38 | 3eqtr4g | |- ( -. ( I e. _V /\ R e. _V ) -> .xb = (/) ) |
| 40 | 34 1 4 | elbasov | |- ( f e. B -> ( I e. _V /\ R e. _V ) ) |
| 41 | 40 | con3i | |- ( -. ( I e. _V /\ R e. _V ) -> -. f e. B ) |
| 42 | 41 | eq0rdv | |- ( -. ( I e. _V /\ R e. _V ) -> B = (/) ) |
| 43 | 42 | xpeq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( K X. B ) = ( K X. (/) ) ) |
| 44 | xp0 | |- ( K X. (/) ) = (/) |
|
| 45 | 43 44 | eqtrdi | |- ( -. ( I e. _V /\ R e. _V ) -> ( K X. B ) = (/) ) |
| 46 | 39 45 | fneq12d | |- ( -. ( I e. _V /\ R e. _V ) -> ( .xb Fn ( K X. B ) <-> (/) Fn (/) ) ) |
| 47 | 33 46 | mpbiri | |- ( -. ( I e. _V /\ R e. _V ) -> .xb Fn ( K X. B ) ) |
| 48 | fnov | |- ( .xb Fn ( K X. B ) <-> .xb = ( x e. K , f e. B |-> ( x .xb f ) ) ) |
|
| 49 | 47 48 | sylib | |- ( -. ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( x .xb f ) ) ) |
| 50 | 41 | pm2.21d | |- ( -. ( I e. _V /\ R e. _V ) -> ( f e. B -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) ) ) |
| 51 | 50 | a1d | |- ( -. ( I e. _V /\ R e. _V ) -> ( x e. K -> ( f e. B -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) ) ) ) |
| 52 | 51 | 3imp | |- ( ( -. ( I e. _V /\ R e. _V ) /\ x e. K /\ f e. B ) -> ( ( D X. { x } ) oF .x. f ) = ( x .xb f ) ) |
| 53 | 52 | mpoeq3dva | |- ( -. ( I e. _V /\ R e. _V ) -> ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) = ( x e. K , f e. B |-> ( x .xb f ) ) ) |
| 54 | 49 53 | eqtr4d | |- ( -. ( I e. _V /\ R e. _V ) -> .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) ) |
| 55 | 30 54 | pm2.61i | |- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |