This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psrnegcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrnegcl.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| psrnegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrnegcl.z | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psrnegcl | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psrnegcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrnegcl.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 6 | psrnegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrnegcl.z | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 8 5 3 | grpinvf1o | ⊢ ( 𝜑 → 𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ) |
| 10 | f1of | ⊢ ( 𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) → 𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 12 | 1 8 4 6 7 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 13 | fco | ⊢ ( ( 𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑁 ∘ 𝑋 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 16 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 17 | 4 16 | rabex2 | ⊢ 𝐷 ∈ V |
| 18 | 15 17 | elmap | ⊢ ( ( 𝑁 ∘ 𝑋 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑁 ∘ 𝑋 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | 14 18 | sylibr | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 20 | 1 8 4 6 2 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 21 | 19 20 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) |