This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psrnegcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrnegcl.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| psrnegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrnegcl.z | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrlinv.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psrlinv.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| Assertion | psrlinv | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) + 𝑋 ) = ( 𝐷 × { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psrnegcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrnegcl.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 6 | psrnegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrnegcl.z | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | psrlinv.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 9 | psrlinv.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 10 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 11 | 4 10 | rabex2 | ⊢ 𝐷 ∈ V |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 13 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ∈ V ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 1 14 4 6 7 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 15 | feqmptd | ⊢ ( 𝜑 → 𝑋 = ( 𝑥 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 18 | 14 5 3 | grpinvf1o | ⊢ ( 𝜑 → 𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ) |
| 19 | f1of | ⊢ ( 𝑁 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) → 𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝑁 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 21 | 20 | feqmptd | ⊢ ( 𝜑 → 𝑁 = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑁 ‘ 𝑦 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑦 = ( 𝑋 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) | |
| 23 | 16 17 21 22 | fmptco | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 24 | 12 13 16 23 17 | offval2 | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 25 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 26 | 1 2 3 4 5 6 7 | psrnegcl | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) |
| 27 | 1 6 25 9 26 7 | psradd | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) + 𝑋 ) = ( ( 𝑁 ∘ 𝑋 ) ∘f ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 28 | fconstmpt | ⊢ ( 𝐷 × { 0 } ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) | |
| 29 | 14 25 8 5 | grplinv | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) = 0 ) |
| 30 | 3 16 29 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) = 0 ) |
| 31 | 30 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ 0 ) ) |
| 32 | 28 31 | eqtr4id | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 33 | 24 27 32 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) + 𝑋 ) = ( 𝐷 × { 0 } ) ) |