This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psrnegcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psrnegcl.i | |- N = ( invg ` R ) |
||
| psrnegcl.b | |- B = ( Base ` S ) |
||
| psrnegcl.z | |- ( ph -> X e. B ) |
||
| Assertion | psrnegcl | |- ( ph -> ( N o. X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psrnegcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psrnegcl.i | |- N = ( invg ` R ) |
|
| 6 | psrnegcl.b | |- B = ( Base ` S ) |
|
| 7 | psrnegcl.z | |- ( ph -> X e. B ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 8 5 3 | grpinvf1o | |- ( ph -> N : ( Base ` R ) -1-1-onto-> ( Base ` R ) ) |
| 10 | f1of | |- ( N : ( Base ` R ) -1-1-onto-> ( Base ` R ) -> N : ( Base ` R ) --> ( Base ` R ) ) |
|
| 11 | 9 10 | syl | |- ( ph -> N : ( Base ` R ) --> ( Base ` R ) ) |
| 12 | 1 8 4 6 7 | psrelbas | |- ( ph -> X : D --> ( Base ` R ) ) |
| 13 | fco | |- ( ( N : ( Base ` R ) --> ( Base ` R ) /\ X : D --> ( Base ` R ) ) -> ( N o. X ) : D --> ( Base ` R ) ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ph -> ( N o. X ) : D --> ( Base ` R ) ) |
| 15 | fvex | |- ( Base ` R ) e. _V |
|
| 16 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 17 | 4 16 | rabex2 | |- D e. _V |
| 18 | 15 17 | elmap | |- ( ( N o. X ) e. ( ( Base ` R ) ^m D ) <-> ( N o. X ) : D --> ( Base ` R ) ) |
| 19 | 14 18 | sylibr | |- ( ph -> ( N o. X ) e. ( ( Base ` R ) ^m D ) ) |
| 20 | 1 8 4 6 2 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 21 | 19 20 | eleqtrrd | |- ( ph -> ( N o. X ) e. B ) |