This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrmulcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrmulcl.t | ⊢ · = ( .r ‘ 𝑆 ) | ||
| psrmulcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrmulcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrmulcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| psrmulcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| Assertion | psrmulcllem | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrmulcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrmulcl.t | ⊢ · = ( .r ‘ 𝑆 ) | |
| 4 | psrmulcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | psrmulcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | psrmulcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | psrmulcl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 1 8 7 2 5 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 10 | 1 8 7 2 6 | psrelbas | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 11 | 7 4 9 10 | rhmpsrlem2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 13 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 14 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 15 | 7 14 | rabex2 | ⊢ 𝐷 ∈ V |
| 16 | 13 15 | elmap | ⊢ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 12 16 | sylibr | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 1 2 18 3 7 5 6 | psrmulfval | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 20 | reldmpsr | ⊢ Rel dom mPwSer | |
| 21 | 20 1 2 | elbasov | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 22 | 5 21 | syl | ⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 24 | 1 8 7 2 23 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 25 | 17 19 24 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |