This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulcl.s | |- S = ( I mPwSer R ) |
|
| psrmulcl.b | |- B = ( Base ` S ) |
||
| psrmulcl.t | |- .x. = ( .r ` S ) |
||
| psrmulcl.r | |- ( ph -> R e. Ring ) |
||
| psrmulcl.x | |- ( ph -> X e. B ) |
||
| psrmulcl.y | |- ( ph -> Y e. B ) |
||
| psrmulcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| Assertion | psrmulcllem | |- ( ph -> ( X .x. Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulcl.s | |- S = ( I mPwSer R ) |
|
| 2 | psrmulcl.b | |- B = ( Base ` S ) |
|
| 3 | psrmulcl.t | |- .x. = ( .r ` S ) |
|
| 4 | psrmulcl.r | |- ( ph -> R e. Ring ) |
|
| 5 | psrmulcl.x | |- ( ph -> X e. B ) |
|
| 6 | psrmulcl.y | |- ( ph -> Y e. B ) |
|
| 7 | psrmulcl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 1 8 7 2 5 | psrelbas | |- ( ph -> X : D --> ( Base ` R ) ) |
| 10 | 1 8 7 2 6 | psrelbas | |- ( ph -> Y : D --> ( Base ` R ) ) |
| 11 | 7 4 9 10 | rhmpsrlem2 | |- ( ( ph /\ k e. D ) -> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) e. ( Base ` R ) ) |
| 12 | 11 | fmpttd | |- ( ph -> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) ) : D --> ( Base ` R ) ) |
| 13 | fvex | |- ( Base ` R ) e. _V |
|
| 14 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 15 | 7 14 | rabex2 | |- D e. _V |
| 16 | 13 15 | elmap | |- ( ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) ) e. ( ( Base ` R ) ^m D ) <-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) ) : D --> ( Base ` R ) ) |
| 17 | 12 16 | sylibr | |- ( ph -> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) ) e. ( ( Base ` R ) ^m D ) ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 1 2 18 3 7 5 6 | psrmulfval | |- ( ph -> ( X .x. Y ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( X ` x ) ( .r ` R ) ( Y ` ( k oF - x ) ) ) ) ) ) ) |
| 20 | reldmpsr | |- Rel dom mPwSer |
|
| 21 | 20 1 2 | elbasov | |- ( X e. B -> ( I e. _V /\ R e. _V ) ) |
| 22 | 5 21 | syl | |- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 23 | 22 | simpld | |- ( ph -> I e. _V ) |
| 24 | 1 8 7 2 23 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 25 | 17 19 24 | 3eltr4d | |- ( ph -> ( X .x. Y ) e. B ) |