This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrcnrg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrcnrg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrcnrg.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | psrcrng | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrcnrg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrcnrg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrcnrg.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 | 1 2 5 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 7 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 9 | 7 8 | mgpbas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 12 | 7 11 | mgpplusg | ⊢ ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 14 | 7 | ringmgp | ⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 16 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
| 17 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 18 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 19 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 20 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 21 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ CRing ) |
| 22 | 1 16 17 18 11 8 19 20 21 | psrcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑆 ) 𝑥 ) ) |
| 23 | 10 13 15 22 | iscmnd | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 24 | 7 | iscrng | ⊢ ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) ) |
| 25 | 6 23 24 | sylanbrc | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) |