This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrcnrg.s | ||
| psrcnrg.i | |||
| psrcnrg.r | |||
| Assertion | psrcrng |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrcnrg.s | ||
| 2 | psrcnrg.i | ||
| 3 | psrcnrg.r | ||
| 4 | crngring | ||
| 5 | 3 4 | syl | |
| 6 | 1 2 5 | psrring | |
| 7 | eqid | ||
| 8 | eqid | ||
| 9 | 7 8 | mgpbas | |
| 10 | 9 | a1i | |
| 11 | eqid | ||
| 12 | 7 11 | mgpplusg | |
| 13 | 12 | a1i | |
| 14 | 7 | ringmgp | |
| 15 | 6 14 | syl | |
| 16 | 2 | 3ad2ant1 | |
| 17 | 5 | 3ad2ant1 | |
| 18 | eqid | ||
| 19 | simp2 | ||
| 20 | simp3 | ||
| 21 | 3 | 3ad2ant1 | |
| 22 | 1 16 17 18 11 8 19 20 21 | psrcom | |
| 23 | 10 13 15 22 | iscmnd | |
| 24 | 7 | iscrng | |
| 25 | 6 23 24 | sylanbrc |