This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrcnrg.s | |- S = ( I mPwSer R ) |
|
| psrcnrg.i | |- ( ph -> I e. V ) |
||
| psrcnrg.r | |- ( ph -> R e. CRing ) |
||
| Assertion | psrcrng | |- ( ph -> S e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrcnrg.s | |- S = ( I mPwSer R ) |
|
| 2 | psrcnrg.i | |- ( ph -> I e. V ) |
|
| 3 | psrcnrg.r | |- ( ph -> R e. CRing ) |
|
| 4 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 5 | 3 4 | syl | |- ( ph -> R e. Ring ) |
| 6 | 1 2 5 | psrring | |- ( ph -> S e. Ring ) |
| 7 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 8 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 9 | 7 8 | mgpbas | |- ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) |
| 10 | 9 | a1i | |- ( ph -> ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) ) |
| 11 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 12 | 7 11 | mgpplusg | |- ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) |
| 13 | 12 | a1i | |- ( ph -> ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) ) |
| 14 | 7 | ringmgp | |- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 15 | 6 14 | syl | |- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 16 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> I e. V ) |
| 17 | 5 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. Ring ) |
| 18 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 19 | simp2 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
|
| 20 | simp3 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
|
| 21 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. CRing ) |
| 22 | 1 16 17 18 11 8 19 20 21 | psrcom | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( .r ` S ) y ) = ( y ( .r ` S ) x ) ) |
| 23 | 10 13 15 22 | iscmnd | |- ( ph -> ( mulGrp ` S ) e. CMnd ) |
| 24 | 7 | iscrng | |- ( S e. CRing <-> ( S e. Ring /\ ( mulGrp ` S ) e. CMnd ) ) |
| 25 | 6 23 24 | sylanbrc | |- ( ph -> S e. CRing ) |